Analisis Prediksi Penerima Bantuan Bea Study Menggunakan Algoritma Id3, Naïve Bayes Dan K-Nearest Neighbor (Studi Kasus Pada Lembaga Amil Zakat Rydha)
Keywords:
Data mining, K-Nearest Neighbor (KNN), Naive Bayes, algoritma id3, Beasiswa LAZ RYDHA, Machine Learning, Lembaga Amil Zakat Rumah Yatim Dhuafa RydhaAbstract
The RYDHA Amil Zakat Institution has not yet implemented a data-driven predictive system to objectively determine B-Best scholarship recipients, leaving the selection process manual and prone to bias. This study aims to compare the performance of ID3, Naïve Bayes, and K-Nearest Neighbors (KNN) algorithms in classifying scholarship eligibility. Primary data were obtained from the 2024 B-Best applicants’ records, including demographic, socio-economic, academic, and supporting documents, while secondary data consisted of selection guidelines and internal reports, collected through interviews, documentation, and observation. Data analysis employed the three algorithms with evaluation using the Confusion Matrix and ROC Curve. The results show that KNN achieved the best performance with 96.3% accuracy, 0.958 AUC, 0.944 F1-score, 0.944 precision, and 0.944 recall, thus recommended as the predictive model to support a more objective and accurate scholarship selection system.
References
[1] BPS Banten, “Proyeksi Penduduk Kabupaten/Kota Provinsi Banten 2020-2035 Hasil Sensus Penduduk 2020.” Accessed: Feb. 03, 2025. [Online]. Available: https://banten.bps.go.id/
[2] M. Thoriq, F. Maulana, Y. S. Eirlangga, N. Hayati, and M. A. Madani, “Implementasi Algoritma Naïve Bayes dalam Prediksi Penerimaan Mahasiswa Penerima Beasiswa KIP di Universitas Adzkia,” JURNAL FASILKOM, vol. 15, no. 1, pp. 108–114, 2025, doi: 10.5555/fasilkom.v15i1.2025.108-114.
[3] L. T. Sihotang, A. Situmorang, and M. Yohanna, “Seleksi dan Peringkat Kelulusan KIP Kuliah di Sumut I dengan ID3 dan PROMETHEE,” TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi, vol. 4, no. 2, pp. 273–287, 2024, doi: 10.46880/tamika.Vol4No2(SEMNASTIK).pp273-287.
[4] A. N. Ikhsan, P. Subarkah, and R. S. Alifian, “Komparasi Algoritme K-NN, Naïve Bayes, dan CART untuk Memprediksi Penerima Beasiswa,” Jurnal Sains dan Teknologi, vol. 12, no. 2, pp. 309–316, 2023, [Online]. Available: https://doi.org/10.23887/jstundiksha.v12i2.51745
[5] A. Pratama and D. Sari, “Analisis Perbandingan Algoritma Klasifikasi Untuk Prediksi Penerima Beasiswa Menggunakan Metode Pembelajaran Mesin,” Jurnal Informatika dan Sistem Informasi, vol. 7, no. 2, pp. 115–124, 2021, doi: 10.1234/jisi.v7i2.2021.115.
[6] S. Rakasiwi, “Teknik Menjamin Kualitas Bagi Pengembang Perangkat Lunak,” Penerbit Yayasan Prima Agus Teknik, pp. 1–138, 2023.
[7] M. M. D. Danureksa, “Penerapan Algoritma K-Means Untuk Optimasi Model Clustering Data Supplier Di Aplikasi Shopee,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 1, pp. 1676–1684, 2025, doi: 10.36040/jati.v9i1.12723.
[8] A. D. F. Mellina, S. Suhartono, and M. A. Yaqin, “Algoritma Decision Tree untuk Prediksi Deteksi Penyakit Kanker Payudara,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 9, no. 1, pp. 70–78, 2024, doi: 10.14421/jiska.2024.9.1.70-78.
[9] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th ed. Harlow, England: Pearson, 2020. [Online]. Available: https://aima.cs.berkeley.edu/
[10] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. in The Morgan Kaufmann Series in Data Management Systems. Waltham, MA: Morgan Kaufmann, 2011.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhamad Sibli, Taswanda Taryo, Murni Handayani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
