Analisis Tipe Kecerdasan Majemuk Siswa Sekolah Dasar Berbasis Catatan Perilaku Menggunakan Algoritma Naive Bayes, K-Nearest Neighbors, dan Support Vector Machine
Keywords:
behavioral records, K-Nearest Neighbors, multiple intelligence, Naive Bayes, Support Vector MachineAbstract
This study aims to identify the types of multiple intelligences of elementary school students based on Howard Gardner's theory by utilizing machine learning algorithms, namely Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The data used comes from student behavior records and intelligence type questionnaires obtained from students or parents. The SEMMA method (Sample, Explore, Modify, Model, Assess) is used, including text preprocessing and TF-IDF feature extraction. The classification process is carried out using Orange Data Mining software and evaluated using accuracy, precision, recall, F1-score, and AUC metrics. The evaluation results show that the SVM algorithm provides the best performance with an accuracy of 93.30% and AUC of 0.997. Naive Bayes follows with 90.50% accuracy and 0.994 AUC, while KNN reaches 89.50% accuracy and 0.941 AUC. The study also results in a web-based application prototype that classifies students' intelligence types and provides personalized learning recommendations. This confirms the effectiveness of machine learning in supporting personalized learning and student potential development.
References
[1] H. Fauzi, Y. Yusnita, W. Sugito, Y. Yurnalis, dan S. Santoso, “Peningkatan Hasil Belajar Siswa Menggunakan Strategi Pembelajaran Berbasis Multiple Intelligence (Kecerdasan Majemuk) pada Mata Pelajaran Tematik Sekolah Dasar,” Mitra PGMI: Jurnal Kependidikan MI, vol. 9, no. 1, hlm. 43–54, Jan 2023, doi: 10.46963/mpgmi.v9i1.518.
[2] B. I. Nugroho, N. A. Santoso, dan A. A. Murtopo, “Prediksi Kemampuan Akademik Mahasiswa dengan Metode Support Vector Machine,” Remik, vol. 7, no. 1, hlm. 177–188, Jan 2023, doi: 10.33395/remik.v7i1.12010.
[3] M. Musfiroh, W. Liliawati, H. Rusnayati, dan Y. R. Nuryani, “Analisis Pola Hubungan Kecerdasan Majemuk dengan Karakter Siswa Sekolah Menengah Pertama pada Kasus Gunung Meletus,” Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains 2015 (SNIPS 2015), hlm. 417–420, 2015.
[4] B. Siregar, C. Aprilia, F. D. Anggaraeni, dan I. Jaya, “Klasifikasi Kecerdasan Majemuk pada Anak Berdasarkan Posting Aktivitas di Media Sosial Menggunakan SentiStrength dan Spearman’s Rank Correlation Coefficient,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 3, no. 4, hlm. 357–365, Okt 2019, doi: https://doi.org/10.30865/mib.v3i4.1500.
[5] D. Andreswari, A. Wijanarko, dan G. L. Yolanda, “Implementasi Metode Forward Chaining Dalam Pembuatan Sistem Pakar Pemilihan Jurusan Kuliah Berdasarkan Hasil Tes Kepribadian dan Kecerdasan Majemuk,” Jurnal Pseudocode, vol. 9, no. 2, hlm. 80–87, 2022, doi: 10.33369/pseudocode.9.2.80-87.
[6] S. Ramadandi dan Jahring, “Klasifikasi Gaya Belajar Mahasiswa Menggunakan Metode Naïve Bayes Classifier,” Jurnal Teknologi dan Informasi, vol. 10, no. 2, hlm. 170–179, 2020, doi: 10.34010/jati.v10i2.
[7] A. Wijaya dan M. Cendana, “Klasifikasi Kepribadian Myres-Briggs Type Indicator Berdasarkan Cuitan di Twitter Menggunakan Metode TF-IDF dan Naive Bayes Classifier,” Jurnal Linguistik Komputasional, vol. 3, no. 2, hlm. 48–53, 2020.
[8] M. Maulidah, “Klasifikasi Kepribadian Menggunakan Algoritma Machine Learning,” Maret, vol. 3, no. 1, hlm. 66–73, 2023, doi: https://doi.org/10.55606/jitek.v3i1.1292.
[9] A. C. Khotimah dan E. Utami, “Comparison Naïve Bayes Classifier, K-Nearest Neighbor and Support Vector Machine In The Classification Of Individual On Twitter Account,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 3, 2022, doi: 10.20884/1.jutif.2022.3.3.254.
[10] R. F. R. Forradellas, S. L. N. Alonso, M. L. Rodriguez, dan J. Jorge-Vazquez, “Applied machine learning in social sciences: Neural networks and crime prediction,” Soc Sci, vol. 10, no. 1, hlm. 1–20, Jan 2021, doi: 10.3390/socsci10010004.
[11] F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia,” 2003.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Asep Herman Nursalam, Agung Budi Susanto, Taswanda Taryo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
