Analisis Sentimen Publik Terhadap Peluang Timnas Indonesia Lolos ke Piala Dunia 2026 Dengan Algoritma Naïve Bayes dan Random Forest
Keywords:
Sentiment Analysis, Indonesian National Team, Random Forest, Naïve Bayes, Public Opinion, World CupAbstract
Football is a sport that is highly anticipated by the Indonesian people in 2025. This enthusiasm increases with the opportunity for the Indonesian national team to compete in the world's biggest football event, the 2026 World Cup which will be held in Canada, Mexico and the United States. There are various public opinions regarding Indonesia's chances of qualifying for the event, ranging from optimistic to pessimistic. This study was conducted to analyze public sentiment towards the chances of the Indonesian national team qualifying for the 2026 World Cup using the Naïve Bayes and Random Forest algorithms. The test results show that Naïve Bayes produces an accuracy of 79.6%, while Random Forest has the highest accuracy, which is 87.3%. Sentiment analysis using Random Forest shows that the majority of public sentiment is Neutral, which is 66.34%. This finding indicates that in general, the public is still doubtful or unsure about the chances of the Indonesian national team to qualify for the 2026 World.
References
[1] M. Muthmainnah, R. Rudiman, and F. Yulianto, “Sentiment Analysis of the Public on the Deployment of Smart Robots in Indonesia Using the Naïve Bayes Method,” JSE Journal of Science and Engineering, vol. 3, no. 2, pp. 85–89, Jan. 2025, doi: 10.30650/jse.v3i2.3887.
[2] W. Widyastuti, D. Dasari, and S. H. Noer, “‘Apa yang Siswa Pikirkan Tentang Matematika?’ Analisis Sentimen pada Siswa Kelas Tinggi Sekolah Dasar,” Jurnal Pendidikan Matematika Universitas Lampung, vol. 12, no. 4, pp. 252–265, Dec. 2024, doi: 10.23960/mtk/v12i4.pp252-265.
[3] A. Erlangga, Y. P. Astuti, E. Kartikadarma, S. Rakasiwi, and E. R. Subhiyakto, “Penggunaan Algoritma Naïve Bayes dengan Polarity Textblob untuk Analisis Sentimen pada Acara ASEAN CUP 2024 U-16 di Media Sosial Twitter,” Jurnal Sains dan Teknologi Informasi, vol. 3, no. 1, pp. 177–189, doi: 10.62951/switch.v3i1.357.
[4] W. Alfiyani, D. Abdul Fatah, and F. Irhamni, “PENERAPAN ALGORITMA NAÏVE BAYES UNTUK ANALISIS SENTIMEN PADA MEDIA SOSIAL X TERHADAP PERFORMA TIM NASIONAL SEPAK BOLA INDONESIA DI ERA KEPEMIMPINAN SHIN TAE-YONG,” Jurnal Mahasiswa Teknik Informatika, vol. 9, no. 3, Jun. 2025.
[5] M. Kholilullah and U. Hayati, “ANALISIS SENTIMEN PENGGUNA TWITTER(X) TENTANG PIALA DUNIA USIA 17 MENGGUNAKAN METODE NAIVE BAYES,” Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 1, Feb. 2024, [Online]. Available: https://apify.com/quacker/twitter-scraper
[6] T. Dwi, P. 1✉, and D. Oktafiani, “Klasifikasi Sentimen Postingan Sosial Media Menggunakan Machine Learning Random Forest dan Naïve Bayes,” INNOVATIVE: Journal Of Social Science Research, vol. 5, no. 1, pp. 2338–2347, 2025.
[7] I. Apryani, A. Fauzi, D. S. Kusumaningrum, and H. H. Handayani, “Analisis Sentimen Performa Timnas Sepak Bola Indonesia pada Kolom Komentar Aplikasi TikTok Menggunakan Algoritma Machine Learning,” Jurnal Accounting Information System (AIMS, vol. 8, no. 1, pp. 76–89, Mar. 2025, doi: 10.32627.
[8] A. A. Firdaus, A. Id Hadiana, and A. K. Ningsih, “Klasifikasi Sentimen pada Aplikasi Shopee Menggunakan Fitur Bag of Word dan Algoritma Random Forest,” R2J, vol. 6, no. 5, pp. 1678–1683, Jul. 2024, doi: 10.38035/rrj.v6i5.
[9] K. Tri Putra, M. Amin Hariyadi, and C. Crysdian, “PERBANDINGAN FEATURE EXTRACTION TF-IDF DAN BOW UNTUK ANALISIS SENTIMEN BERBASIS SVM,” JURNAL CAHAYA MANDALIKA, vol. 3, no. 2, pp. 1449–1463, Nov. 2023.
[10] C. Shifa Khoirunnisa, S. Anggai, T. Informatika, U. Pamulang, and K. Tangerang Selatan, “Analisis Sentimen Opini Masyarakat Terhadap Pemilu 2024 Melalui Media Sosial X Dengan Menggunakan Naive Bayes, K-Nearest Neighbor Dan Decision Tree,” JURNAL ILMU KOMPUTER, vol. 2, no. 2, pp. 157–168, Feb. 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Faizura Zadri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
