Analisis Komparatif K-Nearest Neighbor, XGBoost, dan Support Vector Machine Menggunakan Orange Data Mining dalam Prediksi Kerusakan Aset BMN (Barang Milik Negara) Studi Kasus : Kejaksaan Negeri Kabupaten Tangerang
Keywords:
State-Owned Assets, K-Nearest Neighbor, XGBoost, Support Vector Machine, Orange Data MiningAbstract
Optimal management of State-Owned Assets (BMN) is a crucial factor in ensuring the operational effectiveness of government institutions, particularly at the District Attorney's Office of Tangerang Regency. However, unexpected asset damage often disrupts workflows and leads to inefficiencies in maintenance budgets. This study addresses this issue using a data mining approach, with the primary objective of evaluating and comparing the performance of three machine learning algorithms: K-Nearest Neighbor (K-NN), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost) in predicting asset damage. The methodology employs a classification experimental study on historical asset maintenance data from the 2021–2025 period, analyzed using the Orange Data Mining platform. The research process includes data preprocessing stages (imputation and normalization), data partitioning into 70% training and 30% testing sets, and performance evaluation based on Area Under Curve (AUC), Accuracy, F1-Score, Precision, and Recall metrics. Comparative analysis results indicate that the XGBoost algorithm delivers superior performance, achieving the highest AUC of 0.987 and an F1-Score of 0.905, along with dominant prediction accuracy compared to other models. The K-NN algorithm demonstrates good and stable performance in the second position, whereas SVM exhibits lower accuracy levels than the other two models. Based on these findings, XGBoost is recommended as the optimal model for implementation within the District Attorney's Office asset management system. The adoption of this model is expected to support strategic decision-making, enable a transition to predictive maintenance, and enhance the efficiency of state asset management.
References
[1] E. A. Lubis, “Efektivitas Tata Kelola Barang Milik Negara (BMN) di Lingkungan Kementerian Agama,” J. Ilm. GEMA PERENCANA, vol. 2, no. 1, pp. 1–24, 2023.
[2] D. O. Setiabudhi, “Pengelolaan Aset Pemerintah Daerah Dalam Perspektif Good Governance,” Stud. Soc. Sci., vol. 1, no. 1, p. 7, 2019, doi: 10.35801/tsss.2019.1.1.25014.
[3] Dodi Nofri Yoliad, “Data mining Dalam Analisis Tingkat Penjualan Barang ElektronikMenggunakan Algoritma K-means,” Insearch (Information Syst. Res. J., vol. 3, no. 1, 2023.
[4] Z. R. H. Pohan, M. N. Idris, Ramli, Anwar, and J. Paisal, “Kesadaran Manusia Pada Posisi Ontologis Kecerdasan Buatan ( Artificial Intelligence ) Dalam Perspektif Alquran ( Kajian Tafsir Ayat-Ayat Filosofis ).,” J. Stud. Alquran dan Tafsir, vol. 3, no. 1, pp. 29–38, 2023.
[5] F. Martha and D. Anggraini, “Data Mining Untuk Pemeliharaan Prediktif Mesin Produksi berdasarkan Database Kerusakan Mesin menggunakan Naïve Bayes Classifier,” J. Ilm. Komputasi, vol. 20, no. 2, pp. 143–154, 2021, doi: 10.32409/jikstik.20.2.368.
[6] P. Pangestu and R. Setyadi, “Penerapan Metode K-Nearest Neighbor Untuk Pemilihan Rekomendasi Game FPS Pada Aplikasi Google Play Store,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 742–747, 2023, doi: 10.47065/josh.v4i2.3006.
[7] S. E. Herni Yulianti, Oni Soesanto, and Yuana Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” J. Math. Theory Appl., vol. 4, no. 1, pp. 21–26, 2022, doi: 10.31605/jomta.v4i1.1792.
[8] F. Abdusyukur, “Penerapan Algoritma Support Vector Machine (Svm) Untuk Klasifikasi Pencemaran Nama Baik Di Media Sosial Twitter,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 73–82, 2023, doi: 10.34010/komputa.v12i1.9418.
[9] Ismail, H. N. Rahmah, and R. Sulistiyowati, “Penggunaan Software Orange Data Mining Pada Implementasi Text Mining Dalam Analisis Sentimen Netizen Di Twitter Terhadap Kelangkaan Minyak Goreng,” Sigma-Mu, vol. 14, no. 2, pp. 1–11, 2022, doi: 10.35313/sigmamu.v14i2.4667.
[10] A. Umar, A. Abubakar, and M. Mahfudz, “Aplikasi Metode Komparatif ( Analisis Buku Tafsir Nusantara : Analisis Isu-Isu Gender Dalam Al-Misbah Karya M . Quraish Shihab Dan Turjuman,” Al-Tadabbur J. Ilmu Al-Qur’an dan Tafsir, vol. 6, no. 2, pp. 161–174, 2021, doi: 10.30868/at.v6i02.1825.
[11] N. N. F. Nindy, Vip Paramarta, Indah Haerunnisa, Lia Liana, and Jan Wahyudi Ria, “Implementasi Sistem Pengambilan Keputusan Mahasiswa Berprestasi Politeknik Lp3I Kampus Tasikmalaya,” J. Ekon. Bisnis dan Manaj., vol. 1, no. 2, pp. 46–54, 2023, doi: 10.38204/ekobima.v1i2.1643.
[12] R. G. Wardhana, G. Wang, and F. Sibuea, “Penerapan Machine Learning Dalam Prediksi Tingkat Kasus Penyakit Di Indonesia,” J. Inf. Syst. Manag., vol. 5, no. 1, pp. 40–45, 2023, doi: 10.24076/joism.2023v5i1.1136.
[13] M. Kafil and F. T. Industri, “Penerapan Metode K-Nearest Neighbors,” vol. 3, no. 2, pp. 59–66, 2019.
[14] T. Menggunakan, M. K.- Nearest, N. B. Dan, and S. V. Machines, “Jurnal ilmu komputer,” vol. 2, pp. 323–342, 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 cahyo anggoro

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
