Implementasi Yolov5 Deteksi Mata Lelah Berbasis Android

Authors

  • Ajeng Permata Suri Program Studi Teknik Informatika S-2, Universitas Pamulang
  • Arya Adyhaksa Waskita Program Studi Teknik Informatika S-2, Universitas Pamulang
  • Mardiyanto Program Studi Teknik Informatika S-2, Universitas Pamulang

Keywords:

YOLOv5, Object Detection, Eye Fatigue, Real-time, Android, TensorFlow Lite

Abstract

Excessive screen exposure can trigger digital eye strain, reducing visual comfort, attention, and overall productivity. Prior studies in computer vision indicate that deep learning–based object detection, particularly the YOLO family, can recognize facial and eye-related visual patterns efficiently, making it suitable for early-warning systems on mobile devices. This study aims to implement YOLOv5 to detect signs of eye fatigue in real time using the front camera of an Android smartphone. The novelty of this work lies in deploying a lightweight object-detection model on-device through TensorFlow Lite and integrating an automatic notification mechanism as a preventive intervention. The proposed methodology includes collecting and labeling an eye-image dataset into two classes (awake and drowsy), training a YOLOv5 model in Google Colab, optimizing and converting the trained model to TensorFlow Lite, and integrating it into an Android application for live-camera inference. System performance is evaluated using accuracy, precision, recall, and inference speed (FPS). Experimental results show that the system achieves 95.6% accuracy, 94.3% precision, 96.1% recall, and an Average speed of 22 FPS, enabling responsive detection and timely notifications. In conclusion, the Android-based YOLOv5 implementation is feasible as a preventive solution to help users monitor eye-fatigue symptoms and encourage healthier screen-use habits.

References

[1] ratna sari dinaryanti maulida awalia, “HUBUNGAN LAMA PENGGUNAAN GADGET DENGAN STIKES PERTAMEDIKA Oleh : Ketua : Maulida Awalia ( NIM : 11181027 ) Anggota : Ratna Sari Dinaryanti ( NIDN : 0630018101 ) SEKOLAH TINGGI ILMU KESEHATAN PERTAMEDIKA,” HUBUNGAN LAMA PENGGUNAAN GADGET DENGAN KELELAHAN MATA PADA MAHASISWA, p. 93, 2022.

[2] T. Yurika, N. Nurjannah, S. Basri, S. Ishak, and S. Hajar, “Pengaruh penggunaan gadget dengan kejadian mata lelah pada siswa SMA selama masa pandemi COVID-19,” Jurnal Kedokteran Syiah Kuala, vol. 22, no. 2, pp. 1412–1026, 2022, doi: 10.24815/jks.v22i2.22637.

[3] Anggi Saputra, Maidartati, and Umi Khasanah, “LINDUNGI MATAMU DARI LAYAR: BIJAK PAKAI GADGET, SEHATKAN PENGLIHATAN,” 2025.

[4] D. Peng, J. Cai, L. Zheng, M. Li, L. Nie, and Z. Li, “A Novel Neural Network Model Based on Real Mountain Road Data for Driver Fatigue Detection,” Biomimetics, vol. 10, no. 2, Feb. 2025, doi: 10.3390/biomimetics10020104.

[5] M. Arava and D. M. Sundaram, “Integrating lightweight YOLOv5s and facial 3D keypoints for enhanced fatigued-driving detection,” PeerJ Comput. Sci., vol. 10, pp. 1–27, 2024, doi: 10.7717/peerj-cs.2447.

[6] D. Avola et al., “MS-Faster R-CNN : Multi-Stream Backbone for Improved Faster R-CNN Object Detection and Aerial Tracking from UAV Images,” pp. 1–18, 2021.

[7] I. Wayan, A. A. Wiguna, R. R. Huizen, G. Angga Pradipta, and M. Program, “Optimization of Vehicle Detection at Intersections Using the YOLOv5 Model,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 4, pp. 885–896, 2024, doi: 10.26555/jiteki.v10i4.29309.

[8] A. D. Nugroho and W. M. Baihaqi, “Improved YOLOv5 with Backbone Replacement to MobileNet V3s for School Attribute Detection,” vol. 8, no. 3, pp. 1944–1954, 2023.

[9] Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-time Vehicle Detection Based on Improved YOLO v5,” Sustainability (Switzerland), vol. 14, no. 19, Oct. 2022, doi: 10.3390/su141912274.

[10] SONA SONDARA SAESARIA, “PENDETEKSIAN OBJEK PADA LALU LINTAS BERAGAM DI INDONESIA UNTUK KENDARAAN OTONOM BERBASIS ALGORITME YOLOV5,” Jul. 2024.

[11] Z. Tang, M. M. Hasan, and T. Strauss, “Optimized YOLOv5 model for safety helmet and flame detection system,” Signal Image Video Process., vol. 19, no. 8, Aug. 2025, doi: 10.1007/s11760-025-04073-z.

[12] H. Lin, J. D. Deng, D. Albers, and F. W. Siebert, “Helmet Use Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning,” IEEE Access, vol. 8, pp. 162073–162084, 2020, doi: 10.1109/ACCESS.2020.3021357.

[13] M. F. Ridho, F. Panca, W. Yandi, and A. A. Rachmani, “Electron : Jurnal Ilmiah Teknik Elektro Drowsiness Detection in the Advanced Driver-Assistance System using YOLO V5 Detection Model,” vol. 5, 2024.

[14] A. Susilo and F. Adryansyah, “Optimalisasi Algoritma YOLOv5 untuk Deteksi Mata Katarak,” Journal TIFDA (Technology Information and Data Analytic), vol. 1, no. 2, pp. 63–68, Dec. 2024, doi: 10.70491/tifda.v1i2.55.

[15] M. Zainuddin and M. S. Zuhri, “Implementasi algoritma YOLOv5 pada platform Android untuk penghitungan bibit ikan lele (clarias sp.),” Jurnal Ilmiah Teknologi Informasi Asia, vol. 19, no. 2, pp. 114–121, Sep. 2025, doi: 10.32815/jitika.v19i2.1184.

Downloads

Published

2026-01-31