Analisis Stok Barang Menggunakan Algoritma K-Nearest Neighbor Dan Naïve Bayes Untuk Meningkatkan Efisiensi Persediaan Barang Retail Pada PT. XXX

Authors

  • Catur Restu Putra Program Studi Teknik Informatika S-2, Universitas Pamulang
  • Sajarwo Anggai Program Studi Teknik Informatika S-2, Universitas Pamulang
  • Agung Budi Susanto Program Studi Teknik Informatika S-2, Universitas Pamulang

Keywords:

Inventory Management, K-Nearest Neighbor, naïve bayes, Classification, Data Mining

Abstract

Efficient inventory management is a strategic necessity for retail industries that operate under highly fluctuating demand conditions. PT XXX continues to experience inaccuracies in determining stock requirements because the analysis is still carried out manually using a three-month average sales calculation. This approach is unable to capture actual warehouse variations, resulting in frequent overstock and understock conditions. This study develops a machine learning–based stock classification model using the K-Nearest Neighbor (K-NN) and Naïve Bayes algorithms by utilizing key operational warehouse variables, including average sales, ending stock, and Days of Inventory (DOI). The dataset consists of 4,324 records from November 2024 to October 2025 and was processed using Orange Data Mining. Performance evaluation was conducted using accuracy, precision, recall, and confusion matrix. The results show that K-NN achieved the best performance, with 96.80% accuracy in the prediction model and 93.00% in the test & score evaluation, outperforming Naïve Bayes, which achieved approximately 90%. The study also produced a two-level classification mapping stock status (High/Low) and warehouse recommendations (Low/Enough/Excess) which revealed a significant imbalance between High and Low categories. These findings demonstrate that machine learning–based classification methods can enhance stock assessment accuracy and support more adaptive and efficient restocking decisions in retail inventory management

References

[1] N. W. Wardani, P. Gede, S. Cipta, and G. S. Mahendra, “Implementasi Naïve Bayes Pada Data Mining Untuk Mengklasifikasikan Penjualan Barang Terlaris Pada Perusahaan Ritel,” J. Sains dan Teknol., vol. 12, no. 3, pp. 656–668, 2023, doi: doi.org/10.23887/jstundiksha.v12i3.38605.

[2] M. T. Hidayat, N. Suarna, and N. Rahaningsih, “IMPLEMENTASI ALGORITMA NAÏVE BAYES UNTUK PREDIKSI PERSEDIAAN BARANG PT . DILMONI CITRA MEBEL INDONESIA,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 693–699, 2023. https://www.ejournal.itn.ac.id/index.php/jati/article/view/6310

[3] N. Rahmah and A. A. Ningrum, “Penerapan Metode Naïve Bayes Untuk Prediksi Stok Barang Bangunan Di Toko Bangunan Bersaudara JURNAL MEDIA INFORMATIKA [ JUMIN ],” vol. 6, no. 3, pp. 1930–1937, 2025, [Online]. Available: http://ejournal.sisfokomtek.org/index.php/jumin%0APenerapan

[4] Erni, Kamarudin, and Windarsyah, “Klasifikasi Stok Barang Menggunakan Naive Bayes Untuk Optimalisasi Persediaan Toko Ahmad Adam,” 2025, doi: doi.org/10.51903/juritek.v5i2.3907.

[5] D. Safitri and M. Fakhriza, “K-Nearest Neighbor ( KNN ) Algorithm to Determine the Stock of Building Material Store Materials,” vol. 5, no. 4, pp. 850–857, 2024, doi: 10.47065/josyc.v5i4.5731.

[6] A. Muzani, M. I. A. Sukri, S. N. Fauziah, A. Fatkhurohman, and D. Ariatmanto, “Data Mining Untuk Klasifikasi Produk Menggunakan Algoritma K-Nearest Neighbor Pada Toko Online,” SISFOTEK (Sistem Inf. dan Teknol., pp. 141–145, 2021. https://download.garuda.kemdikbud.go.id/article.php?article=2915856&val=25625&title=Data%20Mining%20Untuk%20Klasifikasi%20Produk%20Menggunakan%20Algoritma%20K-Nearest%20Neighbor%20Pada%20Toko%20Online

[7] H. Priatmojo, F. Saputra, M. H. Prasetiyo, D. Puspitasari, and D. Nurlaela, “Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree , Naive Bayes dan K-Nearest Neighbor,” J. Insa. (Journal Inf. Syst. Manag. Innov., vol. 3, no. 1, pp. 21–28, 2023. https://jurnal.bsi.ac.id/https:/jurnal.bsi.ac.id/index.php/jinsan/article/view/2097

[8] Y. Akbar and M. Qibthiyah, “Penerapan Metode Naïve Bayes untuk Klasifikasi Produk,” J. Indones. Manaj. Inform. dan Komun., vol. 6, no. 3, pp. 1921–1930, 2025, doi: doi.org/10.63447/jimik.v6i3.1603.

[9] R. Setiawan, B. Priyatna, E. Novalia, and B. Huda, “Klasifikasi Tingkat Penjualan Produk pada Toko Jati Karebet Menggunakan Algoritma Naïve Bayes,” vol. 15, no. 2, pp. 297–303, 2025. https://ejurnal.umri.ac.id/index.php/JIK/article/view/9614

[10] L. Sholihah, I. Setiawan, A. T. Permana, I. Y. Azhari, and W. S. R. G. Alrashid, “Implementasi Data Mining untuk Analisis Data Penjualan dengan Menggunakan Algoritma Naïve Bayes,” J. Ris. Sist. Inf. dan Tek. Inform., vol. 2, no. 6, 2024, doi: doi.org/10.61132/merkurius.v2i6.475.

Downloads

Published

2026-01-31