Analisis BERT dan LDA Untuk Ekstraksi Kebijakan Ekonomi Presiden Prabowo Subianto
Keywords:
Topic Modeling, LDA, Economic Policy, Bertopic, BERT, Topic ExtractionAbstract
Economic policies introduced at the beginning of President Prabowo Subianto’s administration have generated diverse public discourses reflected in online media coverage. The large volume of textual data necessitates computational approaches to extract information systematically. This study aims to identify, label, and compare major economic policy topics using topic modeling techniques, namely Latent Dirichlet Allocation (LDA) and BERTopic.The dataset consists of 1,000 economic news articles collected through web scraping from an online news portal. Text preprocessing includes normalization, case folding, cleaning, tokenization, and lemmatization. LDA was implemented using a TF-IDF representation and evaluated with the Coherence Score (c_v). BERTopic employed IndoBERT embeddings, UMAP for dimensionality reduction, and HDBSCAN for hierarchical clustering, with evaluation based on topic coherence and semantic interpretability. The results show that LDA generated eight main topics with a Coherence Score (c_v) of 0.61, indicating moderate performance but limited semantic representation, leading to overlapping topics. In contrast, BERTopic produced nine main topics with a higher Coherence Score (c_v) of 0.72 and clearer, more contextual topic labels, including fiscal policy, energy, capital markets, and economic stimulus. Overall, BERTopic outperformed LDA in extracting and labeling economic policy topics due to its superior ability to capture semantic context and form stable topic clusters.
References
[1] A. C. L and O. A. Putri, “Analisis Badai Inflasi Hipotetis : Dampak dan Respons Kebijakan pada Awal Pemerintahan Prabowo Subianto di Indonesia Tahun 2025,” pp. 187–202, 2025.
[2] S. I. Ishak, O. Arnilia, T. Widodo, I. G. Nyoman, and A. Bisma, “Analisis sentimen terhadap pemerintahan Prabowo – Gibran menggunakan IndoBERT dan LDA,” vol. 7, no. 2, pp. 72–82, 2025, doi: 10.37905/jji.v1i2.34895.
[3] Fadisa Rahma Devi Triana and Muhammad Thoyib Amali, “Analisis Framing Pemberitaan Program Kerja Makan Siang Gratis Prabowo-Gibran Dalam Media Online Liputan6.Com Dan Republika.co.id,” J. Ilmu Sos. dan Ilmu Polit., vol. 13, no. 3, pp. 603–614, 2024, [Online]. Available: www.publikasi.unitri.ac.id
[4] Z. Tang, X. Pan, and Z. Gu, “Analyzing public demands on China’s online government inquiry platform: A BERTopic-Based topic modeling study,” PLoS One, vol. 19, no. 2 February, pp. 1–26, 2024, doi: 10.1371/journal.pone.0296855.
[5] T. Gokcimen and B. Das, “Exploring climate change discourse on social media and blogs using a topic modeling analysis,” Heliyon, vol. 10, no. 11, p. e32464, 2024, doi: 10.1016/j.heliyon.2024.e32464.
[6] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.
[7] H. Tommy et al., “KLASTERISASI BERITA BAHASA INDONESIA DENGAN MENGGUNAKAN K- MEANS DAN WORD EMBEDDING CLUSTERING INDONESIA NEWS USING K-MEANS AND WORD EMBEDDING,” vol. 10, no. 3, 2023, doi: 10.25126/jtiik.2023106468.
[8] F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” COLING 2020 - 28th Int. Conf. Comput. Linguist. Proc. Conf., pp. 757–770, 2020, doi: 10.18653/v1/2020.coling-main.66.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Muhammad Najwah, Sajarwo Anggai, Sudarno

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
