Analisis Sentimen Masyarakat terhadap Program Makan Bergizi Gratis (MBG) pada Media Sosial X Menggunakan Support Vector Machine dan Naïve Bayes

Authors

  • Hanifah Puji Lestari Program Studi Teknik Informatika S-2, Universitas Pamulang

Keywords:

Sentiment analysis, Support Vector Machine, Naïve Bayes, TF-IDF, Social media text classification

Abstract

The rapid growth of social media has transformed public communication patterns and positioned platform X as a digital space where citizens actively express their views on government policies, including the Free Nutritious Meal Program (Program Makan Bergizi Gratis/MBG). As a strategic national initiative aimed at improving students’ nutritional quality, the implementation of the MBG Program has generated diverse public responses that require systematic analysis. This study aims to identify public sentiment tendencies toward the MBG Program and to compare the classification performance of Support Vector Machine (SVM) and Naïve Bayes algorithms in sentiment analysis based on social media text. The research data consist of Indonesian-language tweets collected through a web scraping process using keywords related to the MBG Program. The collected data were processed through several text preprocessing stages to reduce noise and enhance data quality. Sentiment labeling was conducted automatically using a lexicon-based approach, classifying tweets into positive, neutral, and negative categories. Feature representation was performed using the Term Frequency–Inverse Document Frequency (TF-IDF) method, and the dataset was divided into training and testing sets with an 80:20 ratio. Sentiment classification was then carried out using SVM and Naïve Bayes algorithms, with model performance evaluated based on accuracy metrics. The experimental results show that the SVM algorithm achieved an accuracy of 87.57%, outperforming the Naïve Bayes algorithm, which obtained an accuracy of 68.08%. These findings indicate that SVM is more effective in handling high-dimensional and unstructured social media text data

References

[1] T. A. Amini dan K. Setiawan, “Application of the naive bayes algorithm in Twitter sentiment analysis of the 2024 vice presidential candidate Gibran Rakabuming Raka using RapidMiner.,” International Journal of Software Engineering and Computer Science (IJSECS), vol. 4, no. 1, hlm. 234–246, Apr 2024, doi: https://doi.org/10.35870/ijsecs.v4i1.2236.

[2] I. Febryanti, I. Indiati, M. A. Pane, dan P. Astuti, “Implementasi kebijakan makan bergizi gratis (MBG) (studi kasus pada SDN 3 Kepanjen Kabupaten Malang).,” Dialogue : Jurnal Ilmu Administrasi Publik, vol. 7, no. 1, hlm. 067–079, Jun 2025, doi: 10.14710/dialogue.v7i1.26628.

[3] A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, dan W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” Jurnal Teknoinfo, vol. 14, no. 2, hlm. 115, Jul 2020, doi: 10.33365/jti.v14i2.679.

[4] Sylvia, H. Purnomo, O. Arifin, A. Arpan, R. Permata, dan D. Handoko, “Evaluasi Kinerja Algoritma Naive Bayes, K-Nearest Neighbor, Dan Support Vector Machine Dalam Analisis Sentimen Media Sosial.,” Jurnal Sistem Komputer Musi Rawas, vol. 9, no. 2, Des 2024.

[5] E. Indrayuni, A. Nurhadi, dan D. A. Kristiyanti, “Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc,” Faktor Exacta, vol. 14, no. 2, hlm. 64–72, Jun 2021, doi: 10.30998/faktorexacta.v14i2.9697.

[6] F. S. Pamungkas dan I. Kharisudin, “Analisis Sentimen Dengan Support Vector Machine, Naive Bayer Dan KNN Untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 Pada Media Sosial Twitter,” PRISMA, vol. 4, hlm. 628–634, 2021, doi: 10.15294/prisma.v4i.45038.

[7] R. Noviana dan I. Rasal, “Penerapan Algoritma Naive Bayes Dan Support Vector Machine Untuk Analisis Sentimen Boy Band BTS Pada Media Sosial Twitter.,” Jurnal Teknologi Sistem (JTS), vol. 2, no. 2, hlm. 51–60, Jun 2023, doi: https://doi.org/10.56127/jts.v2i2.791.

[8] B. Samodera, K. Kartini, dan M. M. Al Haromainy, “Implementasi Majority Vote Pada Metode Naive Bayes Dan Support Vector Machine(studi Kasus : Kenaikan Pajak Hiburan),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Agu 2024, doi: 10.23960/jitet.v12i3.4799.

[9] A. Perdana, A. Hermawan, dan D. Avianto, “Analisis Sentimen Terhadap Isu Penundaan Pemilu di Twitter Menggunakan Naive Bayes Classifier,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 11, no. 2, hlm. 195–200, Jul 2022, doi: 10.32736/sisfokom.v11i2.1412.

[10] Yuyun, N. Hidayah, dan S. Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” Jurnal RESTI, vol. 5, no. 4, hlm. 820–826, Agu 2021, doi: 10.29207/resti.v5i4.3146.

[11] S. Styawati, N. Hendrastuty, A. R. Isnain, dan A. Y. Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” Jurnal Informatika: Jurnal pengembangan IT (JPIT), vol. 6, no. 3, hlm. 150–155, Sep 2021, doi: 10.30591/jpit.v6i3.2870.

[12] N. Q. Rizkina dan F. N. Hasan, “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” Journal of Information System Research (JOSH), vol. 4, no. 4, hlm. 1136–1144, Jul 2023, doi: 10.47065/josh.v4i4.3803.

[13] F. Nurpandi, F. S. Sulaeman, dan A. Hermawan, “Analisis Sentimen Terhadap Kinerja Kepolisian Indonesia Menggunakan Metode Multinomial Naive Bayes, Long Short-Term Memory, dan Lexicon-Based,” Media Jurnal Informatika, vol. 16, no. 1, hlm. 1, Jun 2024, doi: 10.35194/mji.v16i1.4165.

[14] M. Ghafur Rahman Lubis, D. Sambora Sitompul, T. Muhammad Giovanni, F. Ramadhani, dan S. Dewi, “Evaluasi Kinerja Algoritma Support Vector Machine (SVM) Dalam Analisis Sentimen Publik Terhadap Naturalisasi Timnas Indonesia di Twitter,” JALAKOTEK: Journal of Accounting Law Communication and Technology, vol. 2, Jan 2025, doi: 10.57235/jalakotek.v2i1.4180.

[15] D. S. Mahendra, B. Rahmat, dan R. Mumpuni, “Implementasi Metode Multinomial Naive Bayes dalam Klasifikasi Judul Berita Clickbait,” Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi, vol. 2, no. 3, hlm. 303–316, Jul 2024, doi: 10.61132/neptunus.v2i3.249.

Downloads

Published

2026-01-31