Analisis Topik Dan Sentimen Berbasis Algoritma Latent Dirichlet Allocation (LDA) Dan Bidirectional Encoder Representations From Transformers (BERT): Studi Kasus Ulasan Pelanggan Pada E-Commerce ruparupa.com
Keywords:
Sentiment Analysis, Topic Modeling, LDA, BERT, ruparupa.comAbstract
The growth of e-commerce in Indonesia has led to an increasing volume of customer reviews containing vital information. These reviews are generally in the form of unstructured text, necessitating text analysis methods to extract meaningful insights. This study aims to analyze topics and sentiments in customer reviews of the e-commerce platform ruparupa.com by utilizing Latent Dirichlet Allocation (LDA) and Bidirectional Encoder Representations from Transformers (BERT) algorithms. The LDA algorithm is used to identify the main topics frequently discussed by customers, while BERT is employed to classify review sentiments into positive, negative, and neutral categories. By using Lexicon-Based and VADER as an automatic labeling mechanism (auto-labeling), the preprocessing stage includes cleaning, case folding, and stemming using the Sastrawi library to ensure the quality of the input data. The LDA algorithm is implemented to extract latent topic structures, which are then mapped into five main categories: Price, Application, Service, Product Quality, and Delivery. Furthermore, the DistilBERT model is trained through a fine-tuning process using the AdamW optimizer for 3 epochs. The sentiment analysis results indicate that the model demonstrates very strong performance, as reflected by high accuracy and consistently optimal precision, recall, and F1-score across all sentiment classes. This customer sentiment distribution reflects the level of user satisfaction with the services of ruparupa.com. The combination of LDA and BERT methods is proven effective in providing an overview of key issues and customer perceptions
References
[1] A. S. Pramudita, "How reviews and ratings influence consumer purchase intentions in Indonesian e-commerce," J. Logistik Bisnis, vol. 14, p. 2, 2024.
[2] B. BrightLocal, "Local Consumer Review Survey 2023," BrightLocal, 2023. [Online]. Available: https://www.brightlocal.com/research/local-consumer-review-survey-2023/. [Accessed 26 01 2026].
[3] A. G. Yuda, R. Novita, Mustakim, dan M. Afdal, "Comparison of service and ease of e-commerce user applications using BERT information system," Jurnal Sistem Cerdas, vol. 7, no. No.2, pp. 98-107, 2024.
[4] M. A. Khadija dan W. Nurharjadmo,, "Enhancing Indonesian customer complaint analysis: LDA topic modelling with BERT embeddings," SINERGI (Journal), vol. Vol.28, no. No.1, pp. 153-162, 2024.
[5] B. F. R. Putra, V. H. Pranatawijaya, dan P. B. A. A. Putra, "Analisis Sentimen Berbasis Aspek pada Tempat Wisata di Kalimantan Tengah dengan Memanfaatkan Model Deep Learning," JOINTECOMS (Journal of Information Technology and Computer Science), vol. Vol. 4, no. No. 3, pp. 200-211, 2024.
[6] W. Medhat, A. Hassan, dan H. Korashy,"Sentiment analysis algorithms and applications: A survey," Ain Shams Engineering Journal, vol. 5, no. 4, p. 1093–1113, 2014.
[7]. Azmina, F. N., Liebenlito, M., & Zulkifli, D. U. (2025). Community Detection, Topic, and Sentiment Analysis of the Palestine-Israel Issue on Social Media X. Jurnal Matematika, Statistika dan Komputasi, 21(2), 502–519. https://doi.org/10.20956/j.v21i2.41308 [2]
[8] Febriany, A. K., Dyar Wahyuni, E., & Permatasari, R. (t.t.). Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Indrive Menggunakan Bidirectional Encoder Representations From Transformers (Bert). Jurnal Ilmiah Wahana Pendidikan, 2024(20), 105–115. https://doi.org/10.5281/zenodo.14263982
[9] Hanifa, A., Debora, C., Hasani, M. F., & Wicaksono, P. (2024). Analyzing Views on Presidential Candidates for Election 2024 Based on the Instagram and X Platforms with Text Clustering. Procedia Computer Science, 245(C), 730–739. https://doi.org/10.1016/j.procs.2024.10.299
[10] Hutama, L. B., & Suhartono, D. (2022). Indonesian Hoax News Classification with Multilingual Transformer Model and BERTopic. Informatica (Slovenia), 46(8), 81–90. https://doi.org/10.31449/inf.v46i8.4336
[11] Lihardo Girsang, D., Sidiq, A., & Salsabila Elenaputri, T. (2023). Analisis Sentimen Masyarakat terhadap Layanan BPJS Kesehatan dan Faktor-Faktor Pendukung Opini dengan Pemodelan Natural Language Processing (NLP). Emerging Statistics and Data Science Journal, 1(2).
[12] Sriyanti, Z. A., Kartika, D. S. Y., & Najaf, A. R. E. (2024). Implementasi Model Bert Pada Analisis Sentimen Pengguna Twitter Terhadap Aksi Boikot Produk Israel. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3), 2335–2342. Https://Doi.Org/10.23960/Jitet.V12i3.4743
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Surya Permana, Sajarwo Anggai, Taswanda Taryo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
