Analisis Perancangan Sistem Kontrol Motor DC Berbasis Arduino Menggunakan Potensiometer Dengan Tinkercad
Keywords:
Motor DC, Arduino, potensiometerAbstract
Penelitian ini membahas tentang perancangan dan simulasi sistem kontrol motor DC berbasis Arduino dengan potensiometer menggunakan Tinkercad. Sistem ini memungkinkan kontrol arah pergerakan motor melalui input push-button, sementara potensiometer mengatur kecepatan motor sesuai dengan posisi putarannya. Selain itu, penggunaan LED dan LCD sebagai output memungkinkan pemantauan posisi pergerakan dan kecepatan motor secara real-time. Meskipun simulasi ini telah berhasil diimplementasikan dengan baik, penulis menyadari bahwa masih terdapat kekurangan dalam aspek teori dan penulisan yang perlu diperbaiki. Untuk pengembangan lebih lanjut, diharapkan sistem kontrol motor DC ini dapat diterapkan secara efektif dalam berbagai bidang, baik di lingkungan masyarakat maupun industri.
References
[1] I. Okoro, Feedback–feedforward compensation of a DC motor, in: 6th IEEE PES/IAS PowerAfrica Conference, IEEEXplore, Abuja, Nigeria, 2019, pp. 385–389.
[2] I.S. Okoro, C.O. Enwerem, Performance assessment of a model-based DC motor scheme, Applications of Modelling and Simulation 3 (3) (2019) 145–153.
[3] I.S. Okoro, C. Enwerem, Model-based speed control of a DC motor using a combined control scheme, in: The 2019 IEEE PES/IAS Power Africa Conference,, IEEEXplore, Abuja, Nigeria, 2019, pp. 1–6.
[4] S. Ritu, S.D.P. Pandey, P. Sharma, Simulation of optimal speed control for a DC motor using conventional PID controller and fuzzy logic controller, Int. J. Inf. Comput. Technol. 3 (3) (2013) 181–188.
[5] Okoro, I. S., & Enwerem, C. O. (2020). Robust control of a DC motor. Heliyon, 6(12), e05777.
[6] Salawria P, Lodhi R, Nema P. Different methods of speed control for brushless DC motor: a review. Int J Emerg Technol 2017;8(1):25–9.
[7] Maung MM, MaungLatt M, MyatNwe C. DC motor angular position control using PID controller with friction compensation. Int J Sci Res Publ November 2018;8 (11):149. https://doi.org/10.29322/IJSRP.8.11.2018.p8321. 155.
[8] Mohamed, T. H., Alamin, M. A. M., & Hassan, A. M. (2020). Adaptive position control of a cart moved by a DC motor using integral controller tuned by Jaya optimization with Balloon effect. Computers & Electrical Engineering, 87, 106786.
[9] Pino FJ, Marcos D, Bordons C, Rosa F. Car air-conditioning considerations on hydrogen consumption in fuel cell and driving limitations. Int J Hydrogen Energy 2015;40(35):11696e703.
[10] Gao D, Jin Z, Zhang J, Li J, Ouyang M. Development and performance analysis of a hybrid fuel cell/battery bus with an axle integrated electric motor drive system. Int J Hydrogen Energy 2016;41(2):1161e9.
[11] Ayad SM, Belchior C, Silva G, Lucena RS, Carreira ES, Miranda PE. Analysis of performance parameters of an ethanol fueled spark ignition engine operating with hydrogen enrichment. Int J Hydrogen Energy 2019. https:// doi.org/10.1016/j.ijhydene.2019.05.151. In press.
[12] Jiang C, Chau KT, Lee CH, Han W, Liu W, Lam W. A wireless servo motor drive with bidirectional motion capability. IEEE Trans Power Electron 2019;34(12):12001e10.
[13] Treesatayapun C. Discrete-time adaptive controller for unfixed and unknown control direction. IEEE Trans Ind Electron 2018;65(7):5367e75.
[14] Silva-Ortigoza R, Alba-Martı´nez JM, Marciano-Melchor M, Hernandez-Guzm an VM, Marcelino-Aranda M. Flatness based control of a buck-converter/DC-motor combination. In: Proc. IEEE CERMA.; 2012. p. 294e9.
[15] Chi, X., Quan, S., Chen, J., Wang, Y.-X., & He, H. (2020). Proton exchange membrane fuel cell-powered bidirectional DC motor control based on adaptive sliding-mode technique with neural network estimation. International Journal of Hydrogen Energy, 45(39), 20282–20292.