Analisis penerapan artificial intellegence (AI) pada manajemen risiko rantai pasok

Authors

  • Ulfah Amirah Khairi Universitas Islam Negeri Sumatera Utara (UINSU)
  • Nurbaiti Nurbaiti Universitas Islam Negeri Sumatera Utara (UINSU)
  • Budi Dharma Universitas Islam Negeri Sumatera Utara (UINSU)

Keywords:

Artificial Intelligence, Manajemen, Machine Learning, Neural Networks

Abstract

Supply chain management is a network that manages the organization of a company from the top (beginning) to the bottom (end). Global supply chains face various complex and evolving risks, such as logistics disruptions, fluctuations in raw material prices, and natural disasters. This study aims to provide insights into AI in supply chain risk management, supporting better decision-making regarding AI investment, developing implementation strategies, and selecting the right AI solutions. The research uses the Systematic Literature Review (SLR) method to collect, evaluate, and synthesize scientific data relevant to the topic of discussion published from 2019 to 2024. The research data collection strategy resulted in 71 studies, of which 26 primary studies were the basis of this research. The study results show that AI is beneficial in reducing the impact or risk on supply chain management. This study implies that AI matters to improving efficiency and effectiveness in supply chain management. Machine Learning (ML) and Neural Networks (NN) are the most widely used AI models. Appropriate AI models can assist companies in identifying, analyzing, and managing risks in the supply chain according to the company's existing fields.

Abstrak

Manajemen rantai pasok merupakan suatu jaringan yang mengelola organisasi suatu perusahaan dari atas (awal) hingga ke bawah (akhir). Rantai pasok global saat ini dihadapkan dengan berbagai risiko yang kompleks dan terus berkembang, seperti gangguan logistik, fluktuasi harga bahan baku, dan bencana alam. Penelitian ini bertujuan untuk memberikan wawasan tentang AI pada manajemen risiko rantai pasok, mendukung pengambilan keputusan yang lebih baik dalam hal investasi AI, pengembangan strategi implementasi, dan pemilihan solusi AI yang tepat. Penelitian menggunakan metode Systematic Literature Review (SLR) untuk mengumpulkan, mengevaluasi, dan mensintesis data ilmiah yang relevan dengan topik pembahasan yang dipublikasikan pada tahun 2019 hingga 2024. Strategi pengumpulan data penelitian tersebut menghasilkan 71 penelitian dimana 26 penelitian utama menjadi dasar penelitian ini. Hasil penelitian menunjukkan bahwa AI sangat bermanfaat dalam mengurangi dampak atau risiko yang terjadi pada manajemen rantai pasok. Implikasi dari penelitian ini mencakup peningkatan efisiensi dan efektivitas dalam manajemen rantai pasok melalui penerapan teknologi AI. Model AI yang paling banyak digunakan yaitu Machine Learning (ML) dan Neural Network (NN). Penggunaan model AI yang sesuai dapat membantu perusahaan dalam mengidentifikasi, menganalisis, dan mengelola risiko yang dapat terjadi pada rantai pasok sesuai dengan bidang yang ada pada perusahaan

References

Arulmozhi, P., Hemavathi, N., & Raj, P. (2020). ALRC: A Novel Adaptive Linear Regression Based Classification for Grade based Student Learning using Radio Frequency Identification. Wireless Personal Comunications, 114(4), 2091–2107. https://doi.org/https://doi.org/10.1007/s11277-020-07141-4

Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58–65. https://doi.org/10.1145/3448250

Darsyah, S. (2023). Model Deskriptif Manajemen Strategik: Proses Manajemen Strategik, Lingkungan Eksternal, Lingkungan Internal, Formulasi Strategi. Jurnal Adzkiya, 7(1), 46–58.

Dubey, R., Bryde, D. J., Blome, C., Roubaud, D., & Giannakis, M. (2021). Facilitating artificial intelligence powered supply chain analytics through alliance management during the pandemic crises in the B2B context. Industrial Marketing Management, 96, 135–146. https://doi.org/10.1016/j.indmarman.2021.05.003

Dubey, R., Bryde, D. J., Dwivedi, Y. K., Graham, G., & Foropon, C. (2022). Impact of artificial intelligence-driven big data analytics culture on agility and resilience in humanitarian supply chain: A practice-based view. International Journal of Production Economics, 250. https://doi.org/10.1016/j.ijpe.2022.108618

Hereford, J. M., Siebold, M., & Nichols, S. (2007). Using the particle swarm optimization algorithm for robotic search applications. Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007, May 2007, 53–59. https://doi.org/10.1109/SIS.2007.368026

Idros, F. N. (2006). Manajemen Risiko Perbankan (First Edi). Jakarta: Graha Ilmu.

Kehayov, M., Holder, L., & Koch, V. (2022). Application of artificial intelligence technology in the manufacturing process and purchasing and supply management. Procedia Computer Science, 200, 1209–1217. https://doi.org/10.1016/j.procs.2022.01.321

Kumar, A., Mani, V., Jain, V., Gupta, H., & Venkatesh, V. G. (2023). Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors. Computers and Industrial Engineering, 175. https://doi.org/10.1016/j.cie.2022.108815

Kuncorosidi, K., & Sanjaya, N. S. (2021). Supply chain risk management (SCRM) analysis on the supply chain of halal food products using scor, horr and pareto diagram method (case study on ibu mimin’s chicken slaughter house). Islamic Economic, Accounting and Management Journal (TSARWATICA, 3(1), 48–77.

Lee, J. M., & Wong, E. Y. (2021). Suez Canal blockage: an analysis of legal impact, risks and liabilities to the global supply chain. MATEC Web of Conferences, 339, 01019. https://doi.org/10.1051/matecconf/202133901019

Levi, D. S., Kaminsky, P., & Simchi-Levi, E. (2008). Designing And Managing The Supply Chain (Concepts, Strategies and Case Studies) (S. Mattson (ed.)). McGraw-Hill/Irwin.

Liu, C., Yang, S., Hao, T., & Song, R. (2022). Service risk of energy industry international trade supply chain based on artificial intelligence algorithm. Energy Reports, 8, 13211–13219. https://doi.org/10.1016/j.egyr.2022.09.182

Mahesh, B. (2018). Machine Learning Algorithms-A Review. International Journal of Science and Research. https://doi.org/10.21275/ART20203995

Mattfeld, D. C., & Bierwirth, C. (2004). An efficient genetic algorithm for job shop scheduling with tardiness objectives. European Journal of Operational Research, 155(3), 616–630. https://doi.org/10.1016/S0377-2217(03)00016-X

Maulida, A., Rahmatulloh, A., Ahussalim, I., Mulia, R. A. J., & Rosyani, P. (2023). Analisis Metode Forward Chaining pada Sistem Pakar: Systematic Literature Review. Jurnal Manajemen, Ekonomi, Hukum, Kewirausahaan, Kesehatan, Pendidikan Dan Informatika (MANEKIN), 1(4), 144–151.

Mediavilla, M. A., Dietrich, F., & Palm, D. (2022). Review and analysis of artificial intelligence methods for demand forecasting in supply chain management. Procedia CIRP, 107, 1126–1131. https://doi.org/10.1016/j.procir.2022.05.119

Muzakir, U., Baharuddin, B., Manuhutu, A., & Widoyo, H. (2023). Penerapan Kecerdasan Buatan Dalam Sistem Informasi: Tinjauan Literatur Tentang Aplikasi, Etika, dan Dampak Sosial. Jurnal Review Pendidikan Dan Pengajaran (JRPP), 6(4), 1163–1169.

Nurbaiti, N., Asmuni, A., Soemitra, A., Imsar, I., & Aisyah, S. (2023). Behavior analysis of MSMEs in Indonesia using fintech lending comparative study between sharia fintech lending and conventional fintech lending. JPPI (Jurnal Penelitian Pendidikan Indonesia), 9(4), 92–99. https://doi.org/10.29210/0202312273

Rahmani, N. A. B. (2022). Manajemen Rantai Pasokan. Jakarta: PT Cahaya Rahmat Abadi.

Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete Optimization of Structures Using Genetic Algorithms. Journal of Structural Engineering, 118(5). https://doi.org/https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(123

Renders, J. M., & Simonart, T. (2009). Role of artificial neural networks in dermatology. Dermatology, 219(2), 102–104. https://doi.org/10.1159/000225933

Saputra, R., Nasution, M. I. P., & Dharma, B. (2023). The Impact of Using AI Chat GPT on Marketing Effectiveness: A Case Study on Instagram Marketing. Indonesian Journal of Economics and Management, 3(3), 603–617. https://doi.org/10.35313/ijem.v3i3.4936

Suharjito, Marimin, Machfud, Haryanto, S. (2010). Identifikasi dan Evaluasi Risiko Manajemen Rantai Pasok Komoditas Jagung dengan Pendekatan Logika Fuzzy Suharjito Bambang Haryanto. Jurnal Manajemen Dan Org, 2.

Syamil, A., Subawa, S., Budaya, I., Munizu, M., Darmayanti, N. L., Fahmi, M. A., Wanda, S. S., Murwani, I. A., Utami, F. N., & Dulame, I. M. (2023). Manajemen Rantai Pasok. PT. Sonpedia Publishing Indonesia.

Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009

Wang, J., Lu, S., Wang, S. H., & Zhang, Y. D. (2022). A review on extreme learning machine. Multimedia Tools and Applications, 81(29), 41611–41660. https://doi.org/10.1007/s11042-021-11007-7

Yang, M., Lim, M. K., Qu, Y., Ni, D., & Xiao, Z. (2023). Supply chain risk management with machine learning technology: A literature review and future research directions. Computers and Industrial Engineering, 175. https://doi.org/10.1016/j.cie.2022.108859

Downloads

Published

2024-07-31

How to Cite

Khairi, U. A., Nurbaiti, N., & Dharma, B. (2024). Analisis penerapan artificial intellegence (AI) pada manajemen risiko rantai pasok. Keberlanjutan : Jurnal Manajemen Dan Jurnal Akuntansi, 9(1), 13–25. Retrieved from https://openjournal.unpam.ac.id/index.php/keberlanjutan/article/view/41341