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ABSTRACT 

Poisson regression is widely applied for modeling count data and requires the strict assumption of 

equidispersion, meaning that the mean and variance of the data must be equal. In practice, this condition is 

rarely satisfied. To address this issue, the Bivariate Poisson Generalized Inverse Gaussian Regression 

(BPGIGR) model was developed by combining the Poisson distribution with the Generalized Inverse Gaussian 

(GIG) distribution to overcome overdisperion in two correlated response variables. This study aims to obtain 

parameter estimates and corresponding test statistics for the BPGIGR model by incorporating two exposure 

variables to account to account for differences in population size across analytical units. Parameter estimation 

is performed using the Maximum Likelihood Estimation (MLE) method with the Berndt-Hall-Hall-Hausman 

(BHHH) algorithm. The BPGIGR model is implemented on maternal and neonatal deaths in Kalimantan in 

2024 to identify the significant contributing factors. The results indicate that the model is influenced by the 

percentages of active posyandu, low birth weight, complete neonatal visits, exclusive breasfeeding, K4 visits, 

and pregnant women receiving iron tablets with an 𝐴𝐼𝐶𝑐 of 9.719,092. 

Keywords: BPGIGR, BHHH, maternal mortality, neonatal mortality, Kalimantan 

ABSTRAK 

Regresi Poisson umum digunakan untuk menganalisis data cacahan dan memiliki asumsi ketat yang harus 

dipenuhi yaitu ekuidispersi. Ekuidispersi adalah rataan dan variansi pada data bernilai sama. Pada data riil 

asumsi tersebut sulit terpenuhi, maka model Bivariate Poisson Generalized Inverse Gaussian Regression 

(BPGIGR) dikembangkan dengan menggabungkan distribusi Poisson dengan distribusi Generalized Inverse 

Gaussian (GIG) untuk mengatasi overdispersi pada dua variabel respon yang saling berkorelasi. Penelitian ini 

bertujuan untuk memperoleh estimasi parameter dan statistik uji BPGIGR dengan melibatkan dua variabel 

eksposur guna menyesuaikan perbedaan ukuran populasi pada unit analisis. Penaksiran dilakukan 

menggunakan metode Maximum Likelihood Estimation (MLE) dengan algoritma Berndt-Hall-Hall-Hausman 

(BHHH). Model BPGIGR diaplikasikan pada data jumlah kematian ibu dan neonatal di Kalimantan tahun 2024 

untuk mengidentifikasi faktor yang mempengaruhinya. Hasil menunjukkan model dipengaruhi oleh persentase 

posyandu aktif, persentase BBLR, persentase KN lengkap, persentase bayi diberi ASI eksklusif, persentase 

kunjungan K4 dan persentase ibu hamil mendapat TTD dengan 𝐴𝐼𝐶𝑐 = 9.719,092. 

Keywords: BPGIGR, BHHH, jumlah kematian ibu, jumlah kematian neonatal, Kalimantan 
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1. PENDAHULUAN 

Distribusi Poisson merupakan distribusi yang memiliki modus tunggal dan menceng 

kanan dengan parameter μ > 0 yang juga mendefinisikan nilai ekspektasi dan variansi dari 

distribusi tersebut. Asumsi ini disebut ekuidispersi dimana asumsi tersebut sulit untuk 

dipenuhi pada kasus riil. Pelanggaran asumsi ini sering dijumpai dalam berbagai bidang yaitu 

variansi data lebih besar dari rataannya (overdispersion) ataupun sebaliknya 

(underdispersion). Pelanggaran asumsi ini dapat menghasilkan underestimate pada 

penaksiran standar eror yang mengakibatkan kesalahan dalam pengambilan keputusan pada 

uji hipotesis (1). Untuk mengatasi masalah ini, berbagai model regresi telah dikembangkan 

untuk memodelkan data cacahan yang mengalami overdispersi melalui pendekatan mixed 

Poisson, yakni menggabungkan distribusi Poisson dengan distribusi lainnya baik diskrit 

maupun kontinu. 

Penelitian sebelumnya antara lain Multivariate Poisson Inverse Gaussian Regression 

(MPIGR) dengan algoritma Expectation Maximization (2); Poisson Inverse Gaussian 

Regression (PIGR) dengan algoritma Fisher Scoring (3); Bivariate Poisson Inverse 

Gaussian Regression (BPIGR) dengan algoritma Newton Raphson (4). Namun, 

pengembangan mixed Poisson yang menggabungkan distribusi Poisson dan distribusi 

Generalized Inverse Gaussian (GIG) belum banyak dilakukan. Distribusi GIG sendiri 

berasal dari keluarga distribusi dengan tiga parameter yang dipopulerkan oleh (5) dan 

selanjutnya dikembangkan oleh (6) dalam mencari karakteristik dari distribusi ini. 

Keterbatasan penelitian sebelumnya dalam menggunakan model berbasis GIG menjadi 

relevan ketika diaplikasikan pada data nyata yang tidak hanya mengalami overdispersi, tetapi 

juga melibatkan lebih dari satu variabel respon. Selain itu, pendekatan numerik pada 

penelitian sebelumnya memerlukan turunan kedua dari fungsi ln-likelihood untuk melakukan 

estimasi parameter. Salah satu pendekatan numerik untuk mencari estimator yang hanya 

memerlukan turunan pertama adalah dengan menggunakan algoritma Berdnt-Hall-Hall-

Hausman (BHHH). Algoritma ini lebih sederhana dan menjamin setiap iterasi menghasilkan 

nilai ln-likelihood yang lebih besar dari iterasi sebelumnya (7). 

Dalam konteks kesehatan masyarakat, jumlah kematian ibu dan jumlah kematian 

neonatal merupakan dua indikator penting yang sering dianalisis bersamaan karena memiliki 

keterkaitan yang erat, baik dari sisi faktor risiko maupun kondisi layanan kesehatan di suatu 

daerah. Kompleksitas data seperti ini menuntut pendekatan pemodelan yang mampu 

menangani overdispersi sekaligus hubungan antar kedua variabel respon. Pada penelitian ini 

akan dikaji penaksiran parameter dan pengujian hipotesis pada model regresi Bivariate 

Poisson Generalized Inverse Gaussian (BPGIGR) menggunakan pendekatan numerik 

BHHH yang diimplementasikan pada data jumlah kematian ibu dan jumlah kematian 

neonatal di kabupaten/kota wilayah Kalimantan tahun 2024 untuk mengidentifikasi faktor-

faktor yang berpengaruh secara signifikan. 

2. METODOLOGI 

2.1 Model BPGIGR 

Distribusi Bivariate Poisson Generalized Inverse Gaussian (BPGIG) merupakan 

distribusi yang memiliki dua variabel cacahan berdistribusi Poisson Generalized Inverse 

Gaussian (PGIG) yang saling berkorelasi. Misalkan terdapat dua variabel random 𝑌1 dan 𝑌2 

yang berdistribusi PGIG, maka fungsi peluang bersama distribusi BPGIG adalah adalah (8): 
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2
𝑘=1 + 𝑐𝜙, 𝑠 = ∑ 𝑦𝑘

2
𝑘=1 + 𝑣 dan 𝜇𝑘 = 𝑞𝑘 exp(x

𝑇β𝑘). 
𝑞𝑘 merupakan variabel eksposur, 𝐾𝑎(𝑑) suatu fungsi Bessel jenis ketiga, 𝜙 parameter 

dispersi dan 𝑐 parameter skala dari distribusi GIG. 

Apabila diberikan sampel random 𝑌1𝑖 dan 𝑌2𝑖 yang berdistribusi 

𝐵𝑃𝐺𝐼𝐺(𝜇1, 𝜇2, 𝑣, 𝜙, 𝑐), 𝑖 = 1,2, … , 𝑛 dan 𝑝 variabel prediktor 𝑋1𝑖, 𝑋2𝑖, … , 𝑋𝑝𝑖, maka maka 

model regresi Bivariate Poisson Generalized Inverse Gaussian (BPGIGR) dapat dituliskan 

sebagai (9): 

𝜇𝑘(𝑞𝑘𝑖) = 𝑞𝑘𝑖 exp(x𝑖
𝑇β𝑘) (2) 

Penaksiran parameter model BPGIGR dilakukan menggunakan metode Maximum 

Likelihood Estimation (MLE) sehingga bentuk fungsi likelihood pada model dapat 

dinyatakan sebagai berikut: 
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serta fungsi ln-likelihood model BPGIGR yaitu: 
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Selanjutnya dilakukan penurunan fungsi ln-likelihood terhadap masing-masing parameter 

dengan hasil sebagai berikut:  

a. Turunan pertama fungsi ln-likelihood terhadap β1 
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c. Turunan pertama fungsi ln-likelihood terhadap 𝜙 
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d.Turunan pertama fungsi ln-likelihood terhadap 𝑐 
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Turunan fungsi ln-likelihood terhadap masing-masing parameter yaitu pada persamaan 

(5), (6), (7) dan (8) tidak berbentuk closed form, yaitu setiap persamaan memiliki parameter 

yang belum diketahui, sehingga estimasi parameter pada model BPGIGR tidak dapat 

diselesaikan secara analitik. Oleh karena itu, penyelesaian dilakukan dengan metode numerik 
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Berdnt-Hall-Hall-Hausman (BHHH) yang hanya memerlukan turunan pertama. 

2.2 Algoritma BHHH 

Langkah-langkah pada algoritma Berndt-Hall-Hall-Hausman (BHHH) yaitu: 

1. Menentukan nilai awal estimator  

Θ𝐵𝑃𝐺𝐼𝐺𝑅
(0) = [β1 

𝑇(0) β2 
𝑇(0) 𝜙(0) 𝑐(0)]

𝑇
 

2. Menghitung vektor gradien 

𝑔(Θ𝐵𝑃𝐺𝐼𝐺𝑅) = [
𝜕ℓ(Θ𝐵𝑃𝐺𝐼𝐺𝑅)
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3. Membentuk pendekatan 

𝐻(Θ𝐵𝑃𝐺𝐼𝐺𝑅) = −∑𝑔𝑖(Θ𝐵𝑃𝐺𝐼𝐺𝑅)𝑔𝑖(Θ𝐵𝑃𝐺𝐼𝐺𝑅)
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𝑛
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4. Mensubstitusikan nilai Θ𝐵𝑃𝐺𝐼𝐺𝑅
(0)

 pada elemen 𝑔𝑖(Θ𝐵𝑃𝐺𝐼𝐺𝑅) dan 𝐻(Θ𝐵𝑃𝐺𝐼𝐺𝑅). 
5. Menentukan toleransi konvergensi 𝜀 > 0 dan batas iterasi maksimum 𝑚∗ 

6. Melakukan iterasi dimulai dari 𝑚 = 0 dengan persamaan 

7. Θ𝐵𝑃𝐺𝐼𝐺𝑅
(𝑚+1) = Θ𝐵𝑃𝐺𝐼𝐺𝑅

(𝑚) − H−1(Θ𝐵𝑃𝐺𝐼𝐺𝑅
(𝑚) )g(Θ𝐵𝑃𝐺𝐼𝐺𝑅

(𝑚) ) 
dengan 𝑚 = 0,1,2, … ,𝑚∗ 

8. Iterasi berhenti jika ‖Θ𝐵𝑃𝐺𝐼𝐺𝑅
(𝑚+1) − Θ𝐵𝑃𝐺𝐼𝐺𝑅

(𝑚) ‖ < 𝜀 sehingga didapat penaksir parameter 

Θ̂𝐵𝑃𝐺𝐼𝐺𝑅 = Θ𝐵𝑃𝐺𝐼𝐺𝑅
(𝑚+1)

 yang konvergen saat iterasi ke-𝑚. 

 

Pada penelitian ini, metode numerik BHHH dilakukan melalui package ‘maxBHHH’ 

di R yang menyediakan fungsi khusus untuk menjalankan algoritma BHHH dengan efisien. 

2.3 Tahapan Penelitian 

Data yang digunakan pada penelitian ini adalah data sekunder dari Profil Kesehatan 

yang dipublikasikan oleh Dinas Kesehatan Tingkat Provinsi di Kalimantan, meliputi 

Provinsi Kalimantan Barat, Kalimantan Tengah, Kalimantan Timur dan Kalimantan Utara. 

Adapun tahapan dalam penerapan model BPGIGR adalah sebagai berikut: 

1.  Mengidentifikasi variabel penelitian 

2.  Mengumpulkan data 

3.  Menganalisis statistika deskriptif 

4.  Menguji korelasi antar variabel respon  

5.  Memeriksa multikolinearitas 

6.  Melakukan pemodelan BPGIGR pada data dengan algoritma BHHH 

7.  Menghitung kebaikan model dengan AICc 

8.  Melakukan interpretasi dari model BPGIGR yang didapat 

3. HASIL DAN PEMBAHASAN  

3.1 Deskripsi Variabel Penelitian 

Variabel pada penelitian ini terdiri dari dua variabel respon, enam variabel prediktor 

dan dua variabel eksposur. Karakteristik dari variabel penelitian tersebut dapat dilihat pada 

tabel berikut: 

https://doi.org/10.32493/sm.v7i3.54886
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Tabel 1. Analisis Deskriptif Variabel Penelitian 

Variabel Rataan Variansi Min Maks 

Jumlah Kematian Ibu (𝑌1) 5,91 13,848 0 14 

Jumlah Kematian Neonatal (𝑌2) 39,02 696,690 3 115 

Persentase Posyandu Aktif (𝑋1) 95,97 56,975 63,5 100 

Persentase Berat Badan Lahir Rendah (𝑋2) 19,15 485,096 0,25 100 

Persentase KN Lengkap (𝑋3) 79,23 374,585 14,77 100 

Persentase Bayi Diberi ASI Eksklusif (𝑋4) 62,37 228,124 24,8 86,6 

Persentase Kunjungan K4 (𝑋5) 76,15 178,484 45,2 98,2 

Persentase Ibu Hamil Mendapat TTD (𝑋6) 75,80 235,744 36,3 95,2 

 

Variansi dari variabel respon 𝑌1 dan 𝑌2 keduanya lebih besar dari rata-rata. Hal ini 

mengindikasikan bahwa data mengalami overdispersi sehingga model regresi mixed Poisson 

dapat diterapkan pada data ini. Selain itu, variabsi dari variabel jumlah kematian neonatal 

(𝑌2) lebih besar dibandingkan dengan variansi dari variable jumlah kematian ibu (𝑌1) yang 

memiliki arti bahwa variabel 𝑌2 bersifat lebih heterogen dibandingkan dengan variabel 𝑌1. 

Pada variabel eksposur jumlah ibu hamil, rataan jumlah ibu hamil adalah sebanyak 5.794, 

dengan jumlah ibu hamil tertinggi sebanyak 14.863 dan terendah sebanyak 596. Sedangkan 

pada variabel eksposur jumlah lahir hidup, rata-rata variabel sebesar 4.508, dengan jumlah 

lahir hidup tertinggi sebanyak 12.394 dan terendah sebanyak 396. 

3.3 Pengujian Korelasi Antar Variabel Respon 

Dalam melakukan analisis bivariat, adanya korelasi antar dua variabel respon adalah 

kondisi yang harus dipenuhi. Perhitungan korelasi antara jumlah kematian ibu (𝑌1) dan 

jumlah kematian neonatal (𝑌2) menghasilkan korelasi sebesar 0,799. Selanjutnya, dilakukan 

pengujian korelasi menggunakan uji Bartlett dan diperoleh statistik uji 𝜒2 = 41,367. 

Berdasarkan hasil perhitungan tersebut, nilai statistik uji 𝜒2 > 𝜒(0,05;1)
2 = 3,841. Hal ini 

memiliki arti bahwa terdapat korelasi secara multivariat pada jumlah kematian ibu dan 

jumlah kematian neonatal di Kalimantan tahun 2024. 

3.3 Pemeriksaan Multikolinearitas  

Nilai VIF untuk memeriksa adanya multikolinearitas pada masing-masing variabel 

prediktor disajikan sebagai berikut: 

Tabel 2. Nilai VIF 

VIF 
𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 

1,151 1,226 2,133 1,021 2,139 1,132 

Tabel 2 menunjukkan bahwa nilai VIF dari seluruh variabel prediktor bernilai lebih 

kecil dari 10 sehingga dapat dikatakan bahwa tidak terjadi multikolinearitas antar variabel 

prediktor. 

3.4 Pemodelan Jumlah Kematian Ibu dan Jumlah Kematian Neonatal dengan 

BPGIGR 

Data pada penelitian ini, yaitu jumlah kematian ibu dan jumlah kematian neonatal tidak 

mengikuti distribusi Poisson, mengalami overdispersi, serta saling berkorelasi sehingga 

model Bivariate Poisson Generalized Inverse Gaussian Regression (BPGIGR) digunakan 
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untuk memodelkan data. Proses pemodelan dimulai dari pengujian serentak terhadap semua 

variabel dengan hipotesis sebagai berikut: 

𝐻0: 𝛽𝑗1 = 𝛽𝑗2 = 0, 𝑗 = 1,2, … ,7 

𝐻1: paling sedikit ada satu {𝛽𝑗𝑘, 𝜙, 𝑐} ≠ 0, 𝑘 = 1,2 

Berdasarkan hasil perhitungan, diperoleh nilai statistik uji 𝐺2 = 187,49. Dengan 

menggunakan taraf signifikansi 𝛼 = 5%, titik kritis pengujian adalah 𝜒0,05;12
2 = 21,03. 

Karena 𝐺2 > 𝜒0,05;12
2 , maka nilai statistik uji 𝐺2 berada di daerah penolakan, sehingga 𝐻0 

ditolak. Dapat disimpulkan bahwa paling sedikit ada satu variabel prediktor yang 

berpengaruh dalam model 

Selanjutnya dilakukan estimasi parameter model sekaligus pengujian secara parsial 

dengan hipotesis sebagai berikut: 

Untuk parameter 𝛽𝑗𝑘: 

𝐻0: 𝛽𝑗𝑘 = 0 vs. 𝐻1: 𝛽𝑗𝑘 ≠ 0, 𝑗 = 1,2, … , 𝑝, 𝑘 = 1,2 

Untuk parameter 𝜙: 

𝐻0: 𝜙 = 0 vs. 𝐻1: 𝜙 ≠ 0 

Untuk parameter 𝑐: 

𝐻0: 𝑐 = 0 vs. 𝐻1: 𝑐 ≠ 0 

Hasil estimasi parameter dan pengujian parsial terdapat pada Tabel 3. 

Tabel 3. Hasil Estimasi Parameter dan Pengujian Parsial Model BPGIGR 

Parameter Estimasi Std. Eror Z 𝒑𝒗𝒂𝒍𝒖𝒆 

𝛽10 -5,6810 0,0071 -796,0970 0,0000 

𝛽11 -0,0151 0,0056 -2,6884 0,0072 

𝛽12 0,0069 0,0052 1,3293 0,1838* 

𝛽13 -0,0065 0,0048 -1,3674 0,1715* 

𝛽14 -0,0105 0,0040 -2,6425 0,0082 

𝛽15 0,0055 0,0084 0,6589 0,5099* 

𝛽16 -0,0102 0,0047 -2,1816 0,0291 

𝛽20 -56,423 0,0478 -118,0474 0,0000 

𝛽21 0,0053 0,0011 4,7086 0,0000 

𝛽22 0,0029 0,0008 3,6187 0,0003 

𝛽23 -0,0091 0,0007 -12,4995 0,0000 

𝛽24 -0,0062 0,0007 -9,3772 0,0000 

𝛽25 0,0070 0,0012 5,7345 0,0000 

𝛽26 -0,0099 0,0008 -12,9749 0,0000 

𝜙 0,6658 0,0055 120,7068 0,0000 

𝑐 4,4300 0,0057 774,1988 0,0000 
* : tidak signifikan pada 𝛼 = 5% 

 

Berdasarkan hasil pada Tabel 3, terdapat tiga variabel prediktor yang tidak 

berpengaruh secara signifikan terhadap jumlah kematian ibu (𝑌1) pada parameter β1 yaitu 

variabel persentase BBLR (𝑋2), persentase KN Lengkap (𝑋3) dan persentase kunjungan K4 

(𝑋5), sedangkan variabel prediktor lainnya berpengaruh secara signfikan terhadap 𝑌1. Pada 

jumlah kematian neonatal (𝑌2), seluruh variabel prediktor berpengaruh secara signifikan 

pada parameter β2. Nilai estimasi parameter 𝜙 dan 𝑐 juga signifikan pada 𝛼 = 5%, hal ini 

mengindikasikan bahwa kedua parameter tersebut tidak bernilai nol dan memiliki pengaruh 

dalam model BPGIGR, serta parameter 𝜙 menandakan bahwa model BPGIGR mampu 
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menangani adanya overdispersi pada data jumlah kematian ibu dan neonatal di Kalimantan. 

Pemodelan dilanjutkan dengan membuang tiga variabel prediktor yang tidak signifikan 

tersebut dan menghasilkan model baru dengan seluruh parameter berpengaruh secara 

signifikan. 

3.5 Ukuran Kebaikan Model 

Kebaikan model diukur menggunakan Akaike Information Criterion corrected (AICc), 

yaitu pengembangan dari AIC yang menambahkan koreksi bias untuk ukuran sampel kecil 

sehingga dapat memberikan penilaian yang lebih tepat terhadap kualitas model dibandingkan 

dengan AIC (10). Nilai AICc pada kedua model yang dibentuk yaitu:  

Tabel 4. Nilai AICc 

Variabel Prediktor yang Digunakan Nilai AICc 

𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6 9.719,092 

𝑋1, 𝑋4, 𝑋6 9.774,725 

 

Berdasarkan Tabel 4, pada model penuh yang memuat seluruh variabel prediktor 

menghasilkan nilai AICc yang lebih kecil daripada model yang tidak menyertakan tiga 

variabel prediktor yang tidak signifikan sehingga model tersebut merupakan model terbaik. 

Walaupun ketiga variabel prediktor tersebut tidak signifikan secara statistik, 

penghapusannya justru membuat AICc meningkat dan model tidak menjadi lebih baik secara 

keseluruhan. 

3.6 Interpretasi Model BPGIGR 

Model BPGIGR yang memuat seluruh variabel prediktor dapat disusun dengan 

variabel eksposur untuk jumlah kematian ibu (𝑌1) dan jumlah kematian neonatal (𝑌2). 

Persamaan model BPGIGR dapat ditulis dalam persamaan berikut: 
𝜇̂1𝑖 = 𝑞1𝑖 exp(−5,6810 − 0,0151𝑋1 + 0,0069𝑋2 − 0,0065𝑋3 − 0,0105𝑋4

+ 0,0055𝑋5 − 0,0102𝑋6) 
𝜇̂2𝑖 = 𝑞2𝑖 exp(−56,423 + 0,0053𝑋1 + 0,0029𝑋2 − 0,0091𝑋3 − 0,0062𝑋4

+ 0,0070𝑋5 − 0,0099𝑋6) 

(9) 

Hasil pemodelan pada persamaan (9) dapat diinterpretasikan sebagai: 

1. Peningkatan persentase posyandu aktif (𝑋1) sebesar 10% akan menurunkan jumlah 

kematian ibu sebesar 9,85 kali lipat tetapi akan meningkatkan jumlah kematian neonatal 

sebesar 10,05 kalinya dengan asumsi variabel lain konstan. 

2. Peningkatan persentase BBLR (𝑋2) sebesar 10% akan meningkatkan jumlah kematian ibu 

sebesar 10,07 kali lipat dan akan meningkatkan jumlah kematian neonatal sebesar 10,03 

kalinya dengan asumsi variabel lain konstan. 

3. Peningkatan persentase KN lengkap (𝑋3) sebesar 10% akan menurunkan jumlah kematian 

ibu sebesar 9,94 kali lipat dan akan menurunkan jumlah kematian neonatal sebesar 9,91 

kalinya dengan asumsi variabel lain konstan. 

4. Peningkatan persentase bayi diberi ASI eksklusif (𝑋4) sebesar 10% akan menurunkan 

jumlah kematian ibu sebesar 9,90 kali lipat dan akan menurunkan jumlah kematian 

neonatal sebesar 9,94 kalinya dengan asumsi variabel lain konstan. 

5. Peningkatan persentase kunjungan K4 (𝑋5) sebesar 10% akan meningkatkan jumlah 

kematian ibu sebesar 10,06 kali lipat dan akan meningkatkan jumlah kematian neonatal 

sebesar 10,07 kalinya dengan asumsi variabel lain konstan. 

https://doi.org/10.32493/sm.v7i3.54886


412 

STATMAT (Jurnal Statistika dan Matematika) 

P-ISSN: 2655-3724 E-ISSN: 2720-9881 

Vol. 7, No. 3, December 2025  

11th article, Pages: 405 – 413 

DOI: https://doi.org/10.32493/sm.v7i3.54886 

 

 
 

 

 

 

 

 

6. Peningkatan persentase ibu hamil mendapat TTD (𝑋6) sebesar 10% akan menurunkan 

jumlah kematian ibu sebesar 9,90 kali lipat dan akan menurunkan jumlah kematian 

neonatal sebesar 9,90 kalinya dengan asumsi variabel lain konstan. 

Secara teori, hasil pemodelan diharapkan dapat menurunkan jumlah kematian ibu dan 

jumlah kematian neonatal apabila terjadi penambahan persentase pada setiap variabel 

prediktor. Pola hubungan antara variabel respon dengan prediktor yang bertentangan tidak 

dapat diabaikan begitu saja karena bisa jadi terdapat faktor penting yang berperan dalam 

hubungan tersebut, salah satunya adalah adanya delay pada hasil program kesehatan yang 

dibuat oleh pihak berwenang dalam rangka mengurangi jumlah kematian ibu dan jumlah 

kematian neonatal. Kendati demikian, hasil pemodelan dapat dijadikan sebagai informasi 

pendukung untuk memahami kondisi kematian ibu dan neonatal. 

4. KESIMPULAN 

Model BPGIGR menghasilkan variabel-variabel yang signifikan terhadap variabel 

jumlah kematian ibu dan jumlah kematian neonatal pada Kabupaten/Kota di Kalimantan, 

yaitu persentase posyandu aktif, persentase BBLR, persentase KN lengkap, persentase bayi 

diberi ASI eksklusif, persentase kunjungan K4 dan persentase ibu hamil mendapat TTD 

dengan kriteria kebaikan model 𝐴𝐼𝐶𝑐 = 9.719,092. 
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