UJI KONDUKTIVITAS TERMAL SERAT LUFFA SEBAGAI BAHAN COOLING PAD EVAPORATIVE COOLING BERBASIS FINNED HEAT PIPE
DOI:
https://doi.org/10.32493/strg.v2i3.52322Keywords:
serat luffa, konduktivitas termal, cooling pad, evaporative cooling, finned heat pipeAbstract
Penelitian ini bertujuan untuk mengkaji potensi serat luffa (Luffa cylindrica) sebagai bahan alternatif cooling pad pada sistem evaporative cooling berbasis finned heat pipe. Serat luffa dipilih karena memiliki struktur berpori alami, kemampuan menyerap air yang tinggi, serta bersifat ramah lingkungan dan terbarukan. Pengujian konduktivitas termal dilakukan menggunakan metode steady state dengan variasi tiga sampel untuk memperoleh nilai rata-rata. Hasil pengujian menunjukkan bahwa serat luffa memiliki nilai konduktivitas termal rata-rata sebesar 0,046 W/m·K, yang tergolong rendah dan sesuai untuk aplikasi pendinginan evaporatif. Selain itu, efisiensi sistem evaporative cooling dengan serat luffa sebagai pad mencapai 74,3%, mendekati efisiensi cooling pad selulosa komersial sebesar 76,4%. Penambahan teknologi finned heat pipe terbukti mampu meningkatkan distribusi panas dan efisiensi termal sistem secara keseluruhan. Berdasarkan hasil tersebut, serat luffa menunjukkan potensi sebagai bahan cooling pad alami yang efisien dan berkelanjutan untuk sistem pendingin evaporatif.
References
1. Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (20017). Fundamentals of heat and mass transfer (6th ed.). John Wiley & Sons.
2. Mohammad, A., & Seyed, M. M. (2018). Performance analysis of evaporative cooling systems in hot and dry climates: A review. Renewable and Sustainable Energy Reviews, 86, 722–734. https://doi.org/10.1016/j.rser.2018.03.008
3. Prasad, S., Kumar, R., & Deka, B. C. (2016). Luffa cylindrica: An emerging source of natural fiber for industrial applications. Industrial Crops and Products, 83, 135–145. https://doi.org/10.1016/j.indcrop.2015.12.034
4. Zhang, Y., & Zhao, R. (2014). Heat pipe technology: Theory, applications and recent developments. Renewable and Sustainable Energy Reviews, 45, 558–568. https://doi.org/10.1016/j.rser.2015.01.050
5. Ong, K. S. (2021). Thermal conductivity of some common building materials. International Journal of Thermophysics, 32(7), 1277–1285. https://doi.org/10.1007/s10765-011-1001-z
6. Boukhanouf, R., & Gorton, M. (2014). Experimental investigation of evaporative cooling in hot and humid climate. Applied Thermal Engineering, 62(2), 382–389. https://doi.org/10.1016/j.applthermaleng.2013.09.011
7. Boughali, S., Bouchekima, B., Mennouche, D., Bouguettaia, H., & Bechki, D. (2019). Crop drying by indirect active hybrid solar–electric dryer in the eastern Algerian septentrional Sahara. Solar Energy, 83(12), 2223–2232. https://doi.org/10.1016/j.solener.2009.08.007
8. Taoufik, N., & Hasni, S. (2020). Utilization of agricultural waste fibers for thermal insulation: A review. Construction and Building Materials, 259, 119653. https://doi.org/10.1016/j.conbuildmat.2020.119653
9. Yusuf, M., & Igbalajobi, O. A. (2021). Design and performance evaluation of a luffa-based evaporative cooler. Engineering Reports, 3(7), e12414. https://doi.org/10.1002/eng2.12414
10. Atkinson, J., & Dunn, P. (2023). Heat pipes: Theory, design and applications (6th ed.). Pergamon Press.
11. Gunhan, H., Demir, V., & Yagcioglu, A. K. (2025). Evaluation of the suitability of some local materials as cooling pads. Biosystems Engineering, 96(3), 369–377. https://doi.org/10.1016/j.biosystemseng.2006.02.007
12. Jain, D., & Tiwari, G. N. (2022). Modeling and optimal design of evaporative cooling system in controlled environment greenhouse. Energy Conversion and Management, 43(16), 2235–2250.
https://doi.org/10.1016/S0196-8904(01)00136-7
13. Amer, B. M. A., Hossain, M. A., & Gottschalk, K. (2020). Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conversion and Management, 51(4), 813–820. https://doi.org/10.1016/j.enconman.2009.11.041
14. Hasan, A., & Sirén, K. (2024). Performance investigation of an integrated evaporative and vapor-compression water cooling system. Applied Thermal Engineering, 24(2-3), 357–369. https://doi.org/10.1016/j.applthermaleng.2003.08.001
15. Sethi, V. P., & Sharma, S. K. (2017). Survey and evaluation of passive solar cooling techniques. Renewable and Sustainable Energy Reviews, 11(7), 1117–1140.
https://doi.org/10.1016/j.rser.2005.10.005
16. Choudhury, B., Goel, N., & Baredar, P. (2015). Renewable energy technologies for water desalination – A review. Renewable and Sustainable Energy Reviews, 43, 584–597.
https://doi.org/10.1016/j.rser.2014.11.045
17. Khattab, N. M. (2014). Performance of indirect evaporative cooler under Iraqi summer climatic conditions. Energy Conversion and Management, 45(4), 593–602.
https://doi.org/10.1016/S0196-8904(03)00165-2
18. Goyal, R. K., & Tiwari, G. N. (2023). Parametric study of various configurations of hybrid PV/TE solar air collector: Experimental validation. Energy Conversion and Management, 44(14), 2301–2318.
https://doi.org/10.1016/S0196-8904(02)00239-6
19. Al-Farayedhi, A. A. (2024). Theoretical and experimental study of indirect evaporative cooling systems. Energy Conversion and Management, 45(4), 593–602.
https://doi.org/10.1016/S0196-8904(03)00165-2
20. Wu, W., Zhang, H., & Zhang, J. (2017). Experimental investigation of natural fiber insulation materials for energy-efficient building applications.