Analisis Sentiment pada Sosial Media Twitter Menggunakan NaÑ—ve Bayes Classifier dengan Feature Selection Particle Swarm Optimization dan Term Frequency
DOI:
https://doi.org/10.32493/informatika.v2i1.1500Keywords:
Analisis Sentiment, Twitter, NBC, Term frequency, PSOAbstract
Pengguna media sosial saat ini sangat besar; dimana setiap orang mengungkapkan pendapat; komentar; kritik dan lain-lain. Data tersebut memberikan informasi yang berharga untuk dapat membantu orang atau organisasi dalam pengambilan keputusan. Jumlah data yang sangat besar tidak mungkin bagi manusia untuk membaca dan menganalisis secara manual. Ansalisis Sentiment merupakan proses dalam menganalisis; memahami; dan mengklasifikasi pendapat; evaluasi; penilaian; sikap; dan emosi terhadap suatu entitas tertentu seperti produk; jasa; organisasi; individu; peristiwa; topik; guna mendapatkan informasi. Penelitian ini bertujuan untuk memisahkan tweets berbahasa Indonesia pada media sosial twitter kedalam kategori positif; negatif dan netral. Metode naїve bayes Classifier (NBC) dengan feature selection Particle Swarm Optimization (PSO) diterapkan pada dataset untuk mengurangi atribut yang kurang relevan pada saat proses klasifikasi. Hasil pengujian menunjukan bahwa algoritma Naïve Bayes Classifier dengan feature selection Particle Swarm Optimization (PSO) menggunakan parameter term frequency (TF) dengan akurasi 97;48%.Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms