Klasifikasi Daging Sapi dan Daging Babi Menggunakan CNN dengan Arsitektur EfficientNet-B4 dan Augmentasi Data
DOI:
https://doi.org/10.32493/informatika.v8i2.30586Keywords:
Augmentasi, EfficientNet-B4, CNN, Klasifikasi, DagingAbstract
Meningkatnya kebutuhan daging sapi, membuat harga daging sapi melonjak. Banyak pedagang melakukan kecurangan dengan melakukan oplos daging sapi dengan daging babi agar mendapatkan keuntungan yang lebih. Salah satu teknologi dalam bidang informatika dapat dimanfaatkan untuk membantu membedakan daging sapi, daging babi, dan daging oplosan. Dengan cara klasifikasi hal ini dapat dilakukan, penelitian ini menggunakan Convolutional Neural Network dengan arsitektur EfficietnNet-B4. Proses augmentasi data juga dilakukan pada penelitian ini untuk memperbanyak data citra, setelah di-augmentasi total citra menjadi 9000 dari 3 kelas. Pembagian dataset pada penelitian ini dibagi menjadi 2 yaitu 80% data latih dan 20% data uji serta 90% dan 10%. Proses pengujian dilakukan dengan memfokuskan model yang mendapatkan validation accuracy diatas 75% pada proses pelatihan. Hasil percobaan pada dataset 80:20 citra dengan augmentasi lebih unggul pada setiap model dibanding dengan citra asli. Sedangkan pada dataset 90:10 hasil percobaan dengan citra asli rata – rata lebih unggul dibanding citra dengan augmentasi.
References
Akbar, Rus. 2019. “Hati-Hati Daging Sapi Campur Celeng Beredar.†Www.News.Okezone.Com. Retrieved October 16, 2022 (https://news.okezone.com/read/2009/09/10/1/256216/hati-hati-daging-sapi-campur-celeng-beredar).
Atila, Ümit, Murat Uçar, Kemal Akyol, and Emine Uçar. 2021. “Plant Leaf Disease Classification Using EfficientNet Deep Learning Model.†Ecological Informatics 61(June 2020):101182. doi: 10.1016/j.ecoinf.2020.101182.
Badan Pusat Statistik. 2019. “Produksi Daging Sapi Menurut Provinsi (Ton), 2019-2021.†Www.Bps.Go.Id. Retrieved October 16, 2022 (https://www.bps.go.id/indicator/24/480/1/produksi-daging-sapi-menurut-provinsi.html).
Efendi, Dodi, Suwanto Sanjaya, Fadhilah Syafria, and Elvia Budianita. 2022. “Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 Untuk Klasifikasi Citra Daging Sapi Dan Babi.†Jurnal Riset Komputer 9(3):2407–389. doi: 10.30865/jurikom.v9i3.4176.
Elgendi, Mohamed, Muhammad Umer Nasir, Qunfeng Tang, David Smith, John Paul Grenier, Catherine Batte, Bradley Spieler, William Donald Leslie, Carlo Menon, Richard Ribbon Fletcher, Newton Howard, Rabab Ward, William Parker, and Savvas Nicolaou. 2021. “The Effectiveness of Image Augmentation in Deep Learning Networks for Detecting COVID-19: A Geometric Transformation Perspective.†Frontiers in Medicine 8(March):1–12. doi: 10.3389/fmed.2021.629134.
Geetha, A., and N. B. Prakash. 2022. “Classification of Glaucoma in Retinal Images Using EfficientnetB4 Deep Learning Model.†Computer Systems Science and Engineering 43(3):1041–55. doi: 10.32604/csse.2022.023680.
Handayani, Lestari, Jasril, Elvia Budianita, Winda Oktista, Rizki Hadi, Denanda Fattah, Rado Yendra, and Ahmad Fudholi. 2017. “Comparison of Target Probabilistic Neural Network (PNN) Classification for Beef and Pork.†Journal of Theoretical and Applied Information Technology 95(12):2753–60.
Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated Machine Learning: Methods, Systems, Challanges. Springer.
Ivarsson, Anton. 2021. “Evaluating Hybrid Neural Network Approaches to Multimodal Web Page Classification Based on Textual and Visual Features.†KTH Royal Institute of Technology.
Jasril, Jasril, and Suwanto Sanjaya. 2018. “Learning Vector Quantization 3 (LVQ3) and Spatial Fuzzy C-Means (SFCM) for Beef and Pork Image Classification.†Indonesian Journal of Artificial Intelligence and Data Mining 1(2):60. doi: 10.24014/ijaidm.v1i2.5024.
Kamal Hasan, Mahmud, Adiwijaya, and Al Faraby Said. 2019. “Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network.†E-Proceeding of Engineering 6(1):2127–36.
Mellinia, Zulfa Febriana Dewi. 2022. “Implementasi Model CNN Dan Tensorflow Dalam Pendeteksian Jenis Daging Hewan Ternak.†Jurnal Teknologi Informasi Dan Terapan 9(1):54–61. doi: 10.25047/jtit.v9i1.278.
Oloko-Oba, Mustapha, and Serestina Viriri. 2021. “Ensemble of EfficientNets for the Diagnosis of Tuberculosis.†Computational Intelligence and Neuroscience 2021. doi: 10.1155/2021/9790894.
Purnomo, Edi. 2019. “Oplos Daging Sapi Dengan Babi, Dua Pedagang Di Gunungkidul Diciduk Polisi.†Www.Merdeka.Com. Retrieved October 16, 2022 (https://www.merdeka.com/peristiwa/oplos-daging-sapi-dengan-babi-dua-pedagang-di-gunungkidul-diciduk-polisi.html).
Pusparisa, Yosepha. 2020. “Tren Produksi Daging Sapi Indonesia Menurun.†Www.Databoks.Katadata.Co.Id. Retrieved October 16, 2022 (https://databoks.katadata.co.id/datapublish/2020/02/14/tren-produksi-daging-sapi-indonesia-menurun#:~:text=Menurut kajian Badan Pusat Statistik,kilogram per kapita per tahun.).
Rafi, Taki Hasan. 2020. “A Holistic Comparison between Deep Learning Techniques to Determine Covid-19 Patients Utilizing Chest X-Ray Images.†Engineering and Applied Science Letters 3(4):85–93. doi: 10.30538/psrp-easl2020.0054.
Reza, Ahmed Wasif, Md Mahamudul Hasan, Nazla Nowrin, and Mir Moynuddin Ahmed Shibly. 2021. “Pre-Trained Deep Learning Models in Automatic COVID-19 Diagnosis.†Indonesian Journal of Electrical Engineering and Computer Science 22(3):1540–47. doi: 10.11591/ijeecs.v22.i3.pp1540-1547.
Sudibyo, Usman, Desi Purwanti Kusumaningrum, Eko Hari Rachmawanto, and Christy Atika Sari. 2018. “Optimasi Algoritma Learning Vector Quantization (LVQ) Dalam Pengklasifikasian Citra Daging Sapi Dan Daging Babi Berbasis Glcm Dan Hsv.†Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer 9(1):1–10. doi: 10.24176/simet.v9i1.1943.
Tan, Mingxing, and Quoc V. Le. 2019. “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.†International Conference on Machine Learning 97:6105–14. doi: 10.2310/8000.2013.131108.
Wardana, Bima Kusuma, Ema Rachmawati, and Tjokorda Agung Budi Wirayuda. 2021. “Pengenalan Gestur Tangan Statis Menggunakan CNN Dengan Arsitektur Efficient-Net B4.†8(2):3446–63.
Yuda Alhafis, Gusrifaris, Suwanto Sanjaya, Fadhilah Syafria, and Elvia Budianita. 2022. “Klasifikasi Citra Daging Sapi Dan Daging Babi Menggunakan Ekstraksi Ciri Dan Convolutional Neural Network.†Jurnal Riset Komputer) 9(3):2407–389. doi: 10.30865/jurikom.v9i3.4175.
Zhu, Xueyan, Xinwei Zhang, Zhao Sun, Yili Zheng, Shuchai Su, and Fengjun Chen. 2022. “Identification of Oil Tea (Camellia Oleifera c.Abel) Cultivars Using Efficientnet-B4 Cnn Model with Attention Mechanism.†Forests 13(1):1–13. doi: 10.3390/f13010001.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms