Implementasi K-Nearest Neighbor pada Decission Support System Pemilihan Satuan Pengamanan Event Perguruan Tinggi

Authors

  • Aries Setiawan Dian Nuswantoro University
  • Budi Widjajanto Dian Nuswantoro University
  • Achmad Wahid Kurniawan Dian Nuswantoro University
  • Setyo Budi Dian Nuswantoro University

DOI:

https://doi.org/10.32493/informatika.v5i1.4401

Keywords:

Election, Security Unit, Event, College, K-Nearest Neighbor

Abstract

Routine events required by tertiary institutions require escort from selected security guards. Elections based on personal subjectivity will lead to results that are not in accordance with the purpose of the security itself. However, if the selection is based on the objectives will give results that are in accordance with professionalism. Each security unit has a different level of importance, so that at the level of security the event needs a level of professionalism in accordance with the level of importance at the college level. In detail the selection of security units on several criteria, namely event, years of service, cooperation, service, personality, skills and responsibilities. The method used in this selection process is the K-Nearest Neighbor, with the final result approval rate of  0.88%

References

Abeywickrama, T. (2016). K-Nearest Neighbor on Road Network : a Journey in Experimentation and in Memory Implementation. 2 (arXiv:1601.01549v2).

Khaleel, A. H. (2017). A Weighted Voting of K-Nearest Neighbor Algorithm for Diabetes Mellitus. International Journal of Computer Science and Mobile Computing , 43-51.

Negoro, A. A. (2018). Analisis dan Desain Informasi Manajemen Event di Perguruan Tinggi. Administrasi Bisnis , 20-29.

S. K. (2018). Improving the accuracy of k-nearest neighbor using local mean based and distance weight. Journal of Physics , 1-6.

Saefudin. (2018). Sistem Pendukung Keputusan Menentukan Lokasi Event PT. Mitra Panglima Sejahtera (MPS) Honda Pandeglang Menggunakan Metode Electre. Sistem Informasi , 18-25.

Safri, Y. F. (2018). K-Nearest Neighbor and Naive Bayes Classifier Algorithm in Determining the Classification of Healthy Card Indonesia Giving to the Poor . Scientific Journal Of Informatic , 5, 9-18.

Setiawan, A., & Winarno, A. (2020). Prioritas Pengemudi Untuk Kenyamanan Layanan Penumpang di Lingkungan Akademik Berbasis K-Nearest Neighbor. Jurnal Ilmiah Dinamika Rekayasa , 16.

Sudahnan. (2011). Kewenangan Satpam Sebagai Tenaga Keamanan di Perusahaan. Perspektif , 140-148.

Wibowo, A. P. (2016). Sistem Klasifikasi Kinerja Satpam Menggunakan Metode Na?ve Bayes Classifier. Inovtek Polbeng , 192-201.

Widiastuti, Y., & Sihwi, S. W. (2016). Decision Support System For House Purchasing Using KNN (K-Nearest Neighbor). Jurnal ITSMART , 5, 43-49.

Published

2020-03-31