Analisis Tahanan, Stabilitas, Seakeeping Dan Fenomena Slamming Pada Kapal Dengan Variasi Sudut Deadrise
Keywords:
Sudut Deadrise, Tahanan, Stabilitas, Seakeeping, Slamming, PorpoisingAbstract
Kajian ini bertujuan untuk memberikan tinjauan komprehensif mengenai pengaruh variasi sudut deadrise terhadap performa kapal, termasuk aspek tahanan, stabilitas, seakeeping, dan fenomena slamming. Fokus utama dari review ini adalah menganalisis hasil-hasil penelitian terdahulu dan mengevaluasi dampak sudut deadrise terhadap kinerja kapal dalam berbagai kondisi operasi. Pada aspek tahanan, penelitian menunjukkan bahwa penurunan sudut deadrise dapat meningkatkan gaya angkat, mengurangi tahanan total, namun meningkatkan risiko slamming. Dari segi stabilitas, posisi Longitudinal Center of Gravity (LCG) yang lebih dekat ke haluan dapat memengaruhi periode dan amplitudo gerakan pitch serta porpoising, terutama pada kapal dengan sudut deadrise rendah. Untuk seakeeping, kapal dengan sudut deadrise rendah memiliki kecenderungan mengalami gerakan porpoising lebih besar, yang berpotensi meningkatkan risiko operasional, terutama dalam kondisi laut ekstrem. Fenomena slamming juga menjadi perhatian utama, karena gelombang yang bertabrakan dengan lambung kapal dapat menghasilkan tekanan besar yang tiba-tiba, mengancam struktur kapal. Dengan menganalisis berbagai temuan dari studi eksperimental dan numerik, review ini memberikan pemahaman yang mendalam tentang tantangan dan peluang desain kapal dengan variasi sudut deadrise. Hasil review ini diharapkan dapat membantu perancang kapal dalam mengoptimalkan desain yang efisien dan aman untuk beroperasi di berbagai kondisi laut, sekaligus meminimalkan risiko kerusakan struktur akibat slamming.
References
[1] S. M. Sajedi, P. Ghadimi, and A. Ghadimi, “Experimental appraisal of hydrodynamic performance and motion of a single-stepped high-speed vessel in calm water and regular waves,” no. 424, 2020, doi: 10.1177/0954406220968126.
[2] K. Sadati and H. Zeraatgar, “Investigation of planing craft maneuverability using full-scale tests,” pp. 1–12, 2021, doi: 10.1177/14750902211030386.
[3] S. M. Sajedi and P. Ghadimi, “Experimental and numerical analyses of wedge effects on the rooster tail and porpoising phenomenon of a high-speed planing craft in calm water,” vol. 0, no. 424, pp. 1–16, 2019, doi: 10.1177/0954406219833722.
[4] M. Sadeghi and A. Moghaddas, “Effect of Deadrise Angle on Wet Surface and Hydrodynamic Parameters of Planning Vessel by Experimental and Numerical Methods,” no. November 2021, 2022, doi: 10.22034/ijmst.2021.532756.1528.
[5] A. O. Elaghbash, “ARTICLE A CFD Study of the Resistance Behavior of a Planing Hull in Restricted Waterways,” vol. 03, no. 01, pp. 32–55, 2021.
[6] J. Wang et al., “Resistance Analysis of Rescue Boat in Calm Water Condition,” 2021, doi: 10.1088/1757-899X/1052/1/012062.
[7] D. S. Bogahawatte, L. Athukorala, K. A. Kurukulaarachchi, and A. Priyashan, “Empirical Feasibility Study to Design and Build Rigid Hull Inflatable Boat for Special Operation Units in Sri Lanka Navy,” pp. 75–82.
[8] M. Theses and M. J. Crosby, “ScholarWorks @ GVSU A CFD Study on the Performance of High Speed Planing Hulls,” 2019.
[9] M. Hafiz, N. Aliffrananda, A. Sulisetyono, and Y. A. Hermawan, “Numerical Analysis of Floatplane Porpoising Instability in Calm Water During Takeoff,” vol. 13, no. May 2021, pp. 190–201, 2022, doi: 10.14716/ijtech.v13i1.4903.
[10] A. Windyandari, A. K. Yusim, A. Windyandari, and A. K. Yusim, “BEHAVIOR OF PATROL BOAT USING AXE BOW HULL FORM TO SUPPORT SURVEILLANCE FORM TO SUPPORT SURVEILLANCE ACTIVITIES,” vol. 19, no. 2021, pp. 822–832, doi: 10.5937/jaes0-29354.
[11] P. Ghadimi, S. M. Sajedi, and P. Taghikhani, “Statistical Analysis of Wedge Effect on the Seakeeping of a Planing Hull in Irregular Waves at the Onset of the Planing Region Longitudinal Center of Gravity,” vol. 11, no. 4, pp. 905–918, 2018, doi: 10.29252/jafm.11.04.
[12] L. Zha, R. Zhu, L. Hong, and S. Huang, “Hull form optimization for reduced calm-water resistance and improved vertical motion performance in irregular head waves,” Ocean Eng., vol. 233, no. January, p. 109208, 2021, doi: 10.1016/j.oceaneng.2021.109208.
[13] U. Shipyard, N. Architecture, and M. Faculty, “A New Approach for Seakeeping Performance Assessment of Alternative Hull Forms in Optimization Process,” vol. 2020, no. 1, pp. 236–248, 2020, doi: 10.31202/ecjse.629094.
[14] B. Lagemann, “Efficient seakeeping performance predictions with CFD,” 2019.
[15] R. Perez and J. M. Riola, “CONTRIBUTION TO THE SEAKEEPING ANALYSIS OF MULTIHULL WARSHIPS,” vol. 70, no. 4, pp. 35–50, 2019.
[16] T. Rahmaji, A. R. Prabowo, T. Tuswan, T. Muttaqie, and N. Muhayat, “Design of Fast Patrol Boat for Improving Resistance , Stability , and Seakeeping Performance,” 2024.
[17] L. Duan, L. Zhu, M. Chen, and P. Terndrup, “Experimental study on the propagation characteristics of the slamming pressures,” Ocean Eng., vol. 217, no. August, p. 107868, 2020, doi: 10.1016/j.oceaneng.2020.107868.
[18] M. W. Shepheard and C. Gilbert, “Slamming of High-Speed Craft : A Machine Learning & Parametric Study of Slamming Events Slamming of High-Speed Craft : A Machine Learning & Parametric Study of Slamming Events,” 2022.
[19] S. Tavakoli and A. Dashtimanesh, “A six-DOF theoretical model for steady turning maneuver of a planing hull,” Ocean Eng., vol. 189, no. September, p. 106328, 2019, doi: 10.1016/j.oceaneng.2019.106328.
[20] F. A. Rayhan, A. Masrul, A. K. Akbar, and B. A. Putra, “Numerical Study on Resistance of Stepped Planing Hull,” vol. 7, no. 2, pp. 106–118, 2023, doi: 10.17977/um016v7i22023p106.
[21] B. Ariani, R. C. Ariesta, A. Wildani, M. H. Hakim, and M. Oktaviani, “SHIP PERFORMANCE INVESTIGATION DUE TO DEADRISE,” pp. 608–617, 2023.
[22] A. R. Prabowo, U. S. Maret, T. Muttaqie, T. Tuswan, and U. Diponegoro, “EFFECT OF HULL DESIGN VARIATIONS ON THE RESISTANCE PROFILE AND WAVE PATTERN : A CASE STUDY OF THE PATROL BOAT VESSEL THE RESISTANCE PROFILE AND WAVE PATTERN :,” no. February, 2022.
[23] D. Yang, Z. Sun, Y. Jiang, and Z. Gao, “A Study on the Air Cavity under a Stepped Planing Hull,” 2019.
[24] A. Najafi, H. Nowruzi, and M. J. Ameri, “Hydrodynamic assessment of stepped planing hulls using experiments,” Ocean Eng., vol. 217, no. 424, p. 107939, 2020, doi: 10.1016/j.oceaneng.2020.107939.
[25] P. Ghadimi, S. Tavakoli, and A. Dashtimanesh, “Dynamic response of a wedge through asymmetric free fall in 2 degrees of freedom,” no. 424, 2017, doi: 10.1177/1475090217733150.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Naufal Fadillah, Asral, Awaludin Martin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.