Investigasi Pengaruh Pipa Paraffin terhadap Aplikasi Thermal Storage

Authors

  • Muhammad Yunus Program Studi Teknik Mesin, Universitas Pamulang, Jl. Surya Kencana No. 1, Tangerang Selatan
  • Raka Andrew Rachmanto Program Studi Teknik Mesin, Universitas Pamulang, Jl. Surya Kencana No. 1, Tangerang Selatan

DOI:

https://doi.org/10.32493/jtc.v8i2.53904

Keywords:

Thermal Energy Storage (TES), Paraffin, Phase Change Materials (PCM)

Abstract

Panel fotovoltaik surya memiliki peran yang sangat besar dalam pengembangan pembangkit energi terbarukan. Namun, hingga saat ini, perkembangan teknologi fotovoltaik hanya mampu mencapai efisiensi tertinggi sekitar 15–20%. Selain itu, bagian dari penyinaran yang tidak dikonversi menjadi listrik meningkatkan suhu panel fotovoltaik dan efisiensinya menurun seiring dengan peningkatan suhu. Pada penelitian ini akan dilakukan kajian lebih lanjut mengenai penggunaan phase change material (PCM) dalam sistem penyerapan panas. Konfigurasi sistem penyerap panas terdiri dari pipa tembaga sebagai tempat paraffin dan air yang dipanaskan yang mengalir dalam tabung akrilik. Dalam penelitian ini divariasikan debit air 1,5 lpm dan 3 lpm serta jumlah lekukan pipa. Dalam penelitian ini akan diperoleh data untuk mengetahui proses perubahan temperatur dan freezing pada paraffin, perubahan fasa melting paraffin, serta mengetahui perbandingan temperatur masukan (Tinput) dan temperatur keluaran (Toutput) air. Metode penelitian ini dilakukan secara eksperimen. Dari hasil penelitian eksperimen, pengaruh bentuk pipa penyimpanan paraffin dengan peningkatan aliran debit menghasilkan kenaikan durasi dari keadaan padat hingga paraffin mengalami keadaan melting di pipa bentuk 2, 3, dan 4 siku, yaitu diperoleh waktu sebesar 70 detik, 90 detik, dan 130 detik.

Abstract: Solar photovoltaic panels play a significant role in the development of renewable power generation. However, current photovoltaic technology has only achieved a maximum efficiency of approximately 15–20%. In addition, the portion of irradiance that is not converted into electricity increases the temperature of the photovoltaic panel, causing its efficiency to decline as the temperature rises. This study conducts a further investigation of the use of phase change materials (PCM) in heat absorption systems. The heat absorber system configuration consists of copper pipes used to contain paraffin, as well as heated water flowing through an acrylic tube. In this study, the water flow rates were varied at 1.5 lpm and 3 lpm, along with the number of pipe bends. The study aims to examine the temperature variation and freezing process of paraffin, the phase change during paraffin melting, and the comparison between the inlet and outlet temperatures of the water. The research method employed is experimental. The experimental results show that the geometry of the paraffin storage pipe, combined with an increase in flow rate, leads to an extended duration from the solid state until the paraffin reaches the melting phase. For pipes with 2, 3, and 4 bends, the melting onset times obtained were 70 seconds, 90 seconds, and 130 seconds, respectively.

References

[1] I. Sarbu and C. Sebarchievici, “A Comprehensive Review of Thermal Energy Storage,” Sustainability, vol. 10, no. 1. p. 191, 2018. doi: https://doi.org/10.3390/su10010191.

[2] D. Gibb et al., “Applications of Thermal Energy Storage in the Energy Transition,” IEA Technol. Collab. Program. Energy Conserv. through Energy Storage, p. 154, 2018.

[3] M. Zare and K. S. Mikkonen, “Phase Change Materials for Life Science Applications,” Adv. Funct. Mater, vol. 33, p. 2213455, 2023, doi: https://doi.org/10.1002/adfm.202213455.

[4] X.-M. Yang, T. Shi, X. Wang, H. Liu, D.-Y. Wang, and G.-Z. Yin, “Typical Applications and Flame-Retardant Strategies for Organic Phase-Change Materials,” Carbon Energy, vol. 7, no. 11, p. e70079, 2025, doi: https://doi.org/10.1002/cey2.70079.

[5] W. Ye, D. Jamshideasli, and J. M. Khodadadi, “Improved Performance of Latent Heat Energy Storage Systems in Response to Utilization of High Thermal Conductivity Fins,” Energies, vol. 16, no. 3. p. 1277, 2023. doi: https://doi.org/10.3390/en16031277.

[6] S. Chavan, R. Rudrapati, and S. Manickam, “A comprehensive review on current advances of thermal energy storage and its applications,” Alexandria Eng. J., vol. 61, no. 7, pp. 5455–5463, 2022, doi: https://doi.org/10.1016/j.aej.2021.11.003.

[7] A. Das, M. M. H. Apu, A. Akter, M. M. Al Reza, and R. Mia, “An overview of phase change materials, their production, and applications in textiles,” Results Eng., vol. 25, p. 103603, 2025, doi: https://doi.org/10.1016/j.rineng.2024.103603.

[8] Q. Al-Yasiri and M. Szabó, “Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis,” J. Build. Eng., vol. 36, p. 102122, 2021, doi: https://doi.org/10.1016/j.jobe.2020.102122.

[9] M. Fauzi, B. Kurniawan, A. Fachredzy, M. A. H. Nabawi, and A. P. Tetuko, “Paraffin-Based Phase Change Materials (PCM) with Enhanced Thermal Conductivity Through Particle Addition and Encapsulation Techniques for Thermal Energy Storage: A Critical Review of Materials Science,” Trends Sci., vol. 22, no. 9, p. 10308, 2025, doi: https://doi.org/10.48048/tis.2025.10308.

[10] A. S. S. Bilal et al., “Enhancing thermo-physical properties of paraffin wax phase change material with MXene nanoflakes for improved energy storage and heat transfer applications,” Results Eng., vol. 25, p. 104557, 2025, doi: https://doi.org/10.1016/j.rineng.2025.104557.

Downloads

Published

2015-10-31

How to Cite

Yunus, M., & Rachmanto, R. A. (2015). Investigasi Pengaruh Pipa Paraffin terhadap Aplikasi Thermal Storage. Jurnal Teknik Mesin Cakram, 8(2), 91–95. https://doi.org/10.32493/jtc.v8i2.53904