Desain Perancangan Mesin Cetak Rengginang Berbasis Simulasi
DOI:
https://doi.org/10.32493/jtc.v8i2.54885Keywords:
Mesin Cetak Rengginang, Kapasitas Produksi, Simulasi Solidworks, Kekuatan Sambungan Las, Faktor KeamananAbstract
Penelitian ini bertujuan untuk merancang dan menganalisis mesin cetak rengginang dengan kapasitas produksi 10 kg/jam menggunakan pendekatan simulasi SolidWorks. Kapasitas mesin dihitung menghasilkan 333 keping rengginang per jam dengan siklus operasi sebanyak 84 siklus per jam dan gaya tekan aktuator sebesar 3600 N. Kekuatan sambungan pengelasan dianalisis dengan luas penampang titik las sebesar 961 × 10⁻⁶ m², menghasilkan tegangan geser sebesar 7,14 MPa dan faktor keamanan sambungan las sebesar 14,00. Simulasi struktur menggunakan perangkat lunak SolidWorks menunjukkan nilai stress sebesar 0,3744 MPa, displacement sebesar 0,009212 mm, dan faktor keamanan sebesar 668,3. Hasil perhitungan teoritis menunjukkan stress sebesar 1,531 MPa, displacement 0,001378 mm, dan faktor keamanan 163,3. Perbedaan hasil simulasi dan teoritis mengindikasikan bahwa desain mesin telah memenuhi aspek kekuatan dan keamanan dengan efisiensi tinggi. Studi ini memberikan dasar yang kuat untuk pengembangan mesin cetak rengginang yang aman, efisien, dan optimal dalam produksi.
Abstract: This study aims to design and analyze a rengginang printing machine with a production capacity of 10 kg/hour using SolidWorks simulation. The machine capacity is calculated to produce 333 rengginang pieces per hour with an operating cycle of 84 cycles per hour and an actuator pressing force of 3600 N. The weld joint strength was analyzed with a weld spot area of 961 × 10⁻⁶ m², resulting in a shear stress of 7.14 MPa and a weld joint safety factor of 14.00. Structural simulation using SolidWorks showed a stress value of 0.3744 MPa, displacement of 0.009212 mm, and a safety factor of 668.3. The theoretical calculations indicated a stress of 1.531 MPa, displacement of 0.001378 mm, and a safety factor of 163.3. The differences between simulation and theoretical results indicate that the machine design meets strength and safety requirements with high efficiency. This study provides a solid foundation for developing a safe, efficient, and optimal rengginang printing machine.
References
[1] R. Effendi, R. Pratama, M. Qadri, and A. Yunus Nasution, “Analysis of the Frame Design of Cracker Sheet Printing and Cutting Machine Using Finite Element Method Simulation,” DINAMIS, vol. 12, no. 1, pp. 7–13, 2024, doi: https://doi.org/10.32734/dinamis.v12i1.16359.
[2] R. Iskandar, E. Widawati, and S. I. Goenawan, “Analisis Perancangan dan Pembuatan Cetakan Rengginang untuk Mempermudah Pencetakan dan Memaksimalkan Bentuk Rengginang (Studi Kasus: Dusun Ponggang),” J. Ind. Serv., vol. 6, no. 1, pp. 31–39, 2020, doi: http://dx.doi.org/10.36055/jiss.v6i1.9471.
[3] S. S. Nudehi and J. R. Steffen, Analysis of Machine Elements Using SolidWorks Simulation 2022. Kansas: SDC Publications, 2022.
[4] M. Mróz, R. Czech, B. Kupiec, A. Dec, M. Spólnik, and P. Rąb, “Numerical and Physical Simulation of MAG Welding of Large S235JRC+N Steel Industrial Furnace Wall Panel,” Materials (Basel)., vol. 16, no. 7, p. 2779, 2023, doi: https://doi.org/10.3390/ma16072779.
[5] A. E. Admi, M. A. Sabtu, S. A. Osman, and S. A. Osman, “A Novel Simulation Methodology for Evaluation of Weldment Analysis Tools for Edge Weld Design Optimization,” J. Adv. Res. Appl. Mech., vol. 133, no. 1, pp. 103–119, 2025, doi: https://doi.org/10.37934/aram.133.1.103119.
[6] Y. M. Hwang and I. P. Hsu, “Die Design and Finite Element Analysis of Welding Seams during Aluminum Alloy Tube Extrusion,” Metals (Basel)., vol. 13, no. 5, 2023, doi: https://doi.org/10.3390/met13050911.
[7] S. A. Amin, A. A. Abdulhasan, M. S. Mohammed, and H. S. Majdi, “Experimental and Numerical Study of Maximum Welding Joint Temperature Impacts in Alloy Steel Pipe Welding Microstructure, Distortion, Corrosion Resistance, and Mechanical Properties,” Rev. des Compos. des Mater. Av., vol. 34, no. 6, pp. 775–786, 2024, doi: https://doi.org/10.18280/rcma.340612.
[8] H. M. Mnati, A. H. Kareem, H. S. Majdi, L. J. Habeeb, and A. M. Hashim, “Optimizing Aspect Welds Size for Structural Integrity and Performance: A Simulation Approach Using SolidWorks,” Int. J. Comput. Methods Exp. Meas., vol. 13, no. 1, pp. 177–198, 2025, doi: https://doi.org/10.18280/ijcmem.130119.
[9] R. D. E. Putra and T. Z. Fitri, “Analysis of the Effectiveness of 3D Printing Technology as an Alternative to Replacing Machine Components,” J. Eng. Sci. Technol. Manag., vol. 4, no. 2, pp. 71–75, 2024, doi: https://doi.org/10.31004/jestm.v4i2.187.
[10] V. Raja, S. Nimbkar, J. A. Moses, S. V. Ramachandran Nair, and C. Anandharamakrishnan, “Modeling and Simulation of 3D Food Printing Systems—Scope, Advances, and Challenges,” Foods, vol. 12, no. 18, p. 3412, 2023, doi: https://doi.org/10.3390/foods12183412.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Irwan Aranda, Silviana Simbolon, Herlono Mawardi Purnomo, Elvin Cinta Kasih Gulo, Suciati Muanifah, Muhammad Yunus

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



