Analisis Sentimen Aplikasi Tiktok dengan Metode Support Vector Machine (SVM), Logistic Regression dan Naïve Bayes

Authors

  • Isna Riaandita Ainunnisa Universitas Stikubank Semarang
  • Sulastri Sulastri Universitas Stikubank Semarang

Keywords:

Tiktok Reviews, Sentiment Analysis, Support Vector Machines, Logistics Regression, Naïve Bayes

Abstract

The tiktok application is a platform application specifically for photos, music and videos that many people like, from children, teenagers, and even adults. Tiktok is in great demand because there is a lot of interesting and useful content. Currently, reviews on the TikTok application have reached 16 million reviews with a rating of 4.4 on the Google Play Store, which has reached 500 million downloads. Many users also have many positive and negative reviews on the TikTok application. Because of this, the researcher conducted a sentiment analysis which was used to analyze user opinions by grouping positive, neutral or negative reviews. The data taken in this study was 2100, using the Python programming language. Then the preprocessing stage is carried out, namely case folding, tokenizing, filtering and stemming. The methods used in this study are the Support Vector Machine (SVM) method, Logistic Regression, and Naïve Bayes. The results of applying the 3 sentiment analysis methods are the Sopport Vector Machine method producing an accuracy value of 82%, Precision 82%, Recall 81% and F1 score 81%. The Naïve Bayes method produces an accuracy value of 79%, Precision 81%, Recall 77% and F1 score 78%, Logisstic Regression Method an accuracy value of 84%, precision 83%, recall 82%, F1 score 83%.

References

Abdillah, R., Haerani, E., & Candra, R. M. (2023). Analisis Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Support Vector Machine. Journal of Information System Research, 4(3), 865–873. https://doi.org/10.47065/josh.v4i3.3353

Ansor, H. A., & Safuwan, A. (2023). Analisis Sentimen Opini Warganet Twitter Terhadap Tes Screening Genose Pendeteksi Virus Covid-19 Menggunakan Metode Naive Bayes berbasis Particle Swarm Optimization. JINTEKS (Jurnal Informatika Teknologi Dan Sains), 5(1), 170–178.

Batoebara, M. U. (2020). Aplikasi Tiktok Seru-Seruan atau Kebodoha, 3(2) , 2569 – 6446 https://www.wartaekonomi.co.id/read186408

Bulan, S., & Rohmadani, zahro varisna. (2022). Analisis Sentimen Pada Proyeksi Pemilihan Presiden 2024 Menggunakan Metode Support Vector Machine. Decode: Jurnal Pendidikan Teknologi Informasi, 2(2), 59–65.

Dimas Lutfiyanto, M., Setiawan, E. B., & Si, S. (2021). Expansion Feature dengan Word2Vec untuk Analisis Sentimen pada Opini Politik di Twitter dengan Klasifikasi Support Vector Machine, Naïve Bayes, dan Random Forest. EProceedings of Engineering, 8(5), 10399–10410.

Fazrin, F., Nurul Prastiwi, O., & Andeswari, R. (2022). Perbandingan Algoritma K-Nearest Neighbor dan Logistic Regression pada Analisis Sentimen terhadap Vaksinasi Covid-19 pada Media Sosial Twitter. EProceedings of Engineering, 10(2), 1596–1604.

Fide, S., Suparti, & Sudarno. (2021). Analisis Sentimen Ulasan Aplikasi Tiktok di Google Play menggunakan Metode Support Vector Macine dan Asosiasi. Jurnal Gaussian, 10, 346–358.

Friska Aditia Indriyani, Ahmad Fauzi, & Sutan Faisal. (2023). Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine. TEKNOSAINS : Jurnal Sains, Teknologi Dan Informatika, 10(2), 176–184. https://doi.org/10.37373/tekno.v10i2.419

Jalu, A., Kisma, N., Raras, C., Widiawati, A., Purwokerto, U. A., Informatika, J. T., Informasi, J. T., Bayes, A. N., & Mesin, P. (2023). Microsoft Word - 20. Atmaja Jalu Narendra Kisma, Chyntia Raras Ajeng Widiawati, Suliswaningsih 174-. Jurnal Teknik Informatika Dan Sistem Informasi, 10(2), 174–184.

Kamilah, S. T., Shoheh, P. A., & DKK. (2023). Analisis Konten Dakwah Dalam Aplikasi Tik Tok Di Kalangan Remaja. Jurnal Politik, Sosial, Hukum Dan Humaniora, 1(1), 50–62.

Kavabilla, F. E., Widiharih, T., & Warsito, B. (2023). Analisis Sentimen Pada Ulasan Aplikasi Investasi Online Ajaib Pada Google Play Menggunakan Metode Support Vector Machine Dan Maximum Entropy. Jurnal Gaussian, 11(4), 542–553. https://doi.org/10.14710/j.gauss.11.4.542-553

Lestari, N., Haerani, E., & Candra, R. M. (2023). Analisa Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes. Journal of Information System Research (JOSH) 4(3), 874–882. https://doi.org/10.47065/josh.v4i3.3355

Mardiyanto, R. O. (2023). Analisis sentimen pengguna aplikasi bank syariah indonesia dengan0menggunakan0algoritma support vector machine (svm). TEKNIMEDIA, 4, 9–15.

Munfarida, N. F., & Manajemen, P. S. (2023). Review Produk Dan Content Marketing Produk Frozen. Jurnal Investasi, 9(1), 1–7.

Ndapamuri, A. M., Manongga, D., Iriani, A., Kristen, U., Wacana, S., & No, J. D. (2023). Analisis Sentimen Ulasan Aplikasi Tripadvisor Dengan Metode Support Vector Machine , K-Nearest Neighbor , Dan Naive Bayes. JURNAL INOVTEK POLBENG, 8, 127–140.

Nirwandani, E. P., Indriati, & Wihandika, R. C. (2021). Analisis Sentimen Pada Ulasan Pengguna Aplikasi Mandiri Online Menggunakan Metode Modified Term Frequency Scheme Dan Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(3), 1039–1047.

Nugroho, A., & Rilvani, E. (2023). Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan. Techno.Com, 22(1), 207–214. https://doi.org/10.33633/tc.v22i1.7527

Puspa, T., Sanjaya, R., Fauzi, A., Fitri, A., & Masruriyah, N. (2023). Analisis sentimen ulasan pada e-commerce shopee menggunakan algoritma naive bayes dan support vector machine Analysis of review sentiment on shopee e-commerce using the naive bayes algorithm and support vector machine. INFOTECH: Jurnal Informatika Teknolog, 4, 16–26. https://doi.org/10.37373/infotech.v4i1.422

Riadi, I., & Fadlil, A. (2023). Analisis Sentimen HateSpeech pada Pengguna Layanan Twitter dengan Metode Naïve Bayes Classifier ( NBC ). JURIKOM (Jurnal Riset Komputer), 10(2), 0–9. https://doi.org/10.30865/jurikom.v10i2.5984

Sholahuddin, Mohammad, F., Holik, A., Suprapto, C., Mahendra, Iqbal, I., Wibawanto, S., & Kurniawan, M. (2023). Perbandingan Model Logistic Regression dan K-Nearest Neighbors Dalam Prediksi Pembatalan Hotel. Seminar Nasional Teknik Elektro, Sistem Informasi, Dan Teknik Informatika, 137–143.

Supriyanto, J., Korespondensi, P., Alita, D., & Rahman Isnain, A. (2023). Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring. Jurnal Informatika Dan Rekayasa Perangkat Lunak (Jatika), 4, 74–80. https://doi.org/10.33365/jatika.v4i1.2468

Syakur, A. (2021). Implementasi Metode Lexicon Base Untuk Analisis Sentimen Kebijakan Pemerintah Dalam Pencegahan Penyebaran Virus Corona COVID-19 PADA TWITTER. Jurnal Ilmiah Informatika Komputer, 26(3), 247–260. https://doi.org/10.35760/ik.2021.v26i3.4720

Published

2023-07-30

How to Cite

Ainunnisa, I. R., & Sulastri, S. (2023). Analisis Sentimen Aplikasi Tiktok dengan Metode Support Vector Machine (SVM), Logistic Regression dan Naïve Bayes. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 6(3), 423–430. Retrieved from https://openjournal.unpam.ac.id/index.php/JTSI/article/view/31076