Analisis Sentimen Aplikasi Tiktok dengan Metode Support Vector Machine (SVM), Logistic Regression dan Naïve Bayes
Keywords:
Tiktok Reviews, Sentiment Analysis, Support Vector Machines, Logistics Regression, Naïve BayesAbstract
The tiktok application is a platform application specifically for photos, music and videos that many people like, from children, teenagers, and even adults. Tiktok is in great demand because there is a lot of interesting and useful content. Currently, reviews on the TikTok application have reached 16 million reviews with a rating of 4.4 on the Google Play Store, which has reached 500 million downloads. Many users also have many positive and negative reviews on the TikTok application. Because of this, the researcher conducted a sentiment analysis which was used to analyze user opinions by grouping positive, neutral or negative reviews. The data taken in this study was 2100, using the Python programming language. Then the preprocessing stage is carried out, namely case folding, tokenizing, filtering and stemming. The methods used in this study are the Support Vector Machine (SVM) method, Logistic Regression, and Naïve Bayes. The results of applying the 3 sentiment analysis methods are the Sopport Vector Machine method producing an accuracy value of 82%, Precision 82%, Recall 81% and F1 score 81%. The Naïve Bayes method produces an accuracy value of 79%, Precision 81%, Recall 77% and F1 score 78%, Logisstic Regression Method an accuracy value of 84%, precision 83%, recall 82%, F1 score 83%.References
Abdillah, R., Haerani, E., & Candra, R. M. (2023). Analisis Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Support Vector Machine. Journal of Information System Research, 4(3), 865–873. https://doi.org/10.47065/josh.v4i3.3353
Ansor, H. A., & Safuwan, A. (2023). Analisis Sentimen Opini Warganet Twitter Terhadap Tes Screening Genose Pendeteksi Virus Covid-19 Menggunakan Metode Naive Bayes berbasis Particle Swarm Optimization. JINTEKS (Jurnal Informatika Teknologi Dan Sains), 5(1), 170–178.
Batoebara, M. U. (2020). Aplikasi Tiktok Seru-Seruan atau Kebodoha, 3(2) , 2569 – 6446 https://www.wartaekonomi.co.id/read186408
Bulan, S., & Rohmadani, zahro varisna. (2022). Analisis Sentimen Pada Proyeksi Pemilihan Presiden 2024 Menggunakan Metode Support Vector Machine. Decode: Jurnal Pendidikan Teknologi Informasi, 2(2), 59–65.
Dimas Lutfiyanto, M., Setiawan, E. B., & Si, S. (2021). Expansion Feature dengan Word2Vec untuk Analisis Sentimen pada Opini Politik di Twitter dengan Klasifikasi Support Vector Machine, Naïve Bayes, dan Random Forest. EProceedings of Engineering, 8(5), 10399–10410.
Fazrin, F., Nurul Prastiwi, O., & Andeswari, R. (2022). Perbandingan Algoritma K-Nearest Neighbor dan Logistic Regression pada Analisis Sentimen terhadap Vaksinasi Covid-19 pada Media Sosial Twitter. EProceedings of Engineering, 10(2), 1596–1604.
Fide, S., Suparti, & Sudarno. (2021). Analisis Sentimen Ulasan Aplikasi Tiktok di Google Play menggunakan Metode Support Vector Macine dan Asosiasi. Jurnal Gaussian, 10, 346–358.
Friska Aditia Indriyani, Ahmad Fauzi, & Sutan Faisal. (2023). Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine. TEKNOSAINS : Jurnal Sains, Teknologi Dan Informatika, 10(2), 176–184. https://doi.org/10.37373/tekno.v10i2.419
Jalu, A., Kisma, N., Raras, C., Widiawati, A., Purwokerto, U. A., Informatika, J. T., Informasi, J. T., Bayes, A. N., & Mesin, P. (2023). Microsoft Word - 20. Atmaja Jalu Narendra Kisma, Chyntia Raras Ajeng Widiawati, Suliswaningsih 174-. Jurnal Teknik Informatika Dan Sistem Informasi, 10(2), 174–184.
Kamilah, S. T., Shoheh, P. A., & DKK. (2023). Analisis Konten Dakwah Dalam Aplikasi Tik Tok Di Kalangan Remaja. Jurnal Politik, Sosial, Hukum Dan Humaniora, 1(1), 50–62.
Kavabilla, F. E., Widiharih, T., & Warsito, B. (2023). Analisis Sentimen Pada Ulasan Aplikasi Investasi Online Ajaib Pada Google Play Menggunakan Metode Support Vector Machine Dan Maximum Entropy. Jurnal Gaussian, 11(4), 542–553. https://doi.org/10.14710/j.gauss.11.4.542-553
Lestari, N., Haerani, E., & Candra, R. M. (2023). Analisa Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes. Journal of Information System Research (JOSH) 4(3), 874–882. https://doi.org/10.47065/josh.v4i3.3355
Mardiyanto, R. O. (2023). Analisis sentimen pengguna aplikasi bank syariah indonesia dengan0menggunakan0algoritma support vector machine (svm). TEKNIMEDIA, 4, 9–15.
Munfarida, N. F., & Manajemen, P. S. (2023). Review Produk Dan Content Marketing Produk Frozen. Jurnal Investasi, 9(1), 1–7.
Ndapamuri, A. M., Manongga, D., Iriani, A., Kristen, U., Wacana, S., & No, J. D. (2023). Analisis Sentimen Ulasan Aplikasi Tripadvisor Dengan Metode Support Vector Machine , K-Nearest Neighbor , Dan Naive Bayes. JURNAL INOVTEK POLBENG, 8, 127–140.
Nirwandani, E. P., Indriati, & Wihandika, R. C. (2021). Analisis Sentimen Pada Ulasan Pengguna Aplikasi Mandiri Online Menggunakan Metode Modified Term Frequency Scheme Dan Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(3), 1039–1047.
Nugroho, A., & Rilvani, E. (2023). Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan. Techno.Com, 22(1), 207–214. https://doi.org/10.33633/tc.v22i1.7527
Puspa, T., Sanjaya, R., Fauzi, A., Fitri, A., & Masruriyah, N. (2023). Analisis sentimen ulasan pada e-commerce shopee menggunakan algoritma naive bayes dan support vector machine Analysis of review sentiment on shopee e-commerce using the naive bayes algorithm and support vector machine. INFOTECH: Jurnal Informatika Teknolog, 4, 16–26. https://doi.org/10.37373/infotech.v4i1.422
Riadi, I., & Fadlil, A. (2023). Analisis Sentimen HateSpeech pada Pengguna Layanan Twitter dengan Metode Naïve Bayes Classifier ( NBC ). JURIKOM (Jurnal Riset Komputer), 10(2), 0–9. https://doi.org/10.30865/jurikom.v10i2.5984
Sholahuddin, Mohammad, F., Holik, A., Suprapto, C., Mahendra, Iqbal, I., Wibawanto, S., & Kurniawan, M. (2023). Perbandingan Model Logistic Regression dan K-Nearest Neighbors Dalam Prediksi Pembatalan Hotel. Seminar Nasional Teknik Elektro, Sistem Informasi, Dan Teknik Informatika, 137–143.
Supriyanto, J., Korespondensi, P., Alita, D., & Rahman Isnain, A. (2023). Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring. Jurnal Informatika Dan Rekayasa Perangkat Lunak (Jatika), 4, 74–80. https://doi.org/10.33365/jatika.v4i1.2468
Syakur, A. (2021). Implementasi Metode Lexicon Base Untuk Analisis Sentimen Kebijakan Pemerintah Dalam Pencegahan Penyebaran Virus Corona COVID-19 PADA TWITTER. Jurnal Ilmiah Informatika Komputer, 26(3), 247–260. https://doi.org/10.35760/ik.2021.v26i3.4720
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Isna Riaandita Ainunnisa, Sulastri Sulastri
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms