Deteksi Leukemia Limfoblastik Akut menggunakan Convolutional Neural Network

Authors

  • Mutaqin Akbar Universitas Mercu Buana Yogyakarta
  • Putri Taqwa Prasetyaningrum Universitas Mercu Buana Yogyakarta
  • Putry Wahyu Setyaningsih Universitas Mercu Buana Yogyakarta
  • Moh Ahsan Universitas PGRI Kanjuruhan Malang
  • Alexius Endy Budianto Universitas PGRI Kanjuruhan Malang

DOI:

https://doi.org/10.32493/jtsi.v7i1.34168

Keywords:

acute lymphoblastic leukemia; classification; convolutional neural network

Abstract

Acute lymphoblastic leukemia is the most important type of childhood leukemia, and accounts for 25% of childhood cancers. Accurately differentiating normal cell precursors from cancer cells is key to the diagnosis of acute lymphoblastic leukemia (ALL). However, under a microscope, cancer cells are so similar to normal cells that it is difficult to classify them. This article presents a detection of acute lymphoblastic leukemia using Convolutional Neural Network (CNN). The dataset which is obtained from ALL_IDB is 582 color image data which is divided into 482 training image data and 100 testing image data. The image data will be resized to 128x128x3 before being input to the CNN model. The CNN model used in this study is a multi-scale CNN which consists of 3 convolution layers (filter size of 3x3, number of filters for each convolution layer is 32, 64, and 128 respectively, and ReLU activation function), 3 subsampling layers using maxpool with filter size of 2x2 , 1 concatenate layer is used to combine the output of each subsampling layer, 1 fully-connected layer with a softmax activation function and a cross-entropy error function, and finally an output layer with 2 classes, namely normal cells and cancer cells. The CNN model will be trained using the Adam optimizer training algorithm with a training rate of 0.0002 and iterated 20 times. Based on the training results after iterating 20 times, the smallest error value was obtained, namely 0.0001 and the largest accuracy value, namely 100% in the 20th epoch. The CNN model was then tested with 100 testing image data and obtained an accuracy rate of 98% and an error value of 0.0482.

References

Ahmed, N., Yigit, A., Isik, Z., & Alpkocak, A. (2019). Identification of Leukemia Subtypes from Microscopic Images Using Convolutional Neural Network. Diagnostics (Basel, Switzerland), 9(3), 104. https://doi.org/10.3390/diagnostics9030104

Akbar, M., Purnomo, A. S., & Supatman, S. (2022). Multi-Scale Convolutional Networks untuk Pengenalan Rambu Lalu Lintas di Indonesia. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 310–315. https://doi.org/10.32736/sisfokom.v11i3.1452

Boldú, L., Merino, A., Alférez, S., Molina, A., Acevedo, A., & Rodellar, J. (2019). Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. Journal of Clinical Pathology, 72(11), 755–761. https://doi.org/10.1136/jclinpath-2019-205949

Daoud, M. I., Abdel-Rahman, S., Bdair, T. M., Al-Najar, M. S., Al-Hawari, F. H., & Alazrai, R. (2020). Breast Tumor Classification in Ultrasound Images Using Combined Deep and Handcrafted Features. Sensors, 20(23), 6838. https://doi.org/10.3390/s20236838

Fujita, T. C., Sousa-Pereira, N., Amarante, M. K., & Watanabe, M. A. E. (2021). Acute lymphoid leukemia etiopathogenesis. Molecular Biology Reports, 48(1), 817–822. https://doi.org/10.1007/s11033-020-06073-3

Genovese, A., Hosseini, M. S., Piuri, V., Plataniotis, K. N., & Scotti, F. (2021). Acute Lymphoblastic Leukemia Detection Based on Adaptive Unsharpening and Deep Learning. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1205–1209. https://doi.org/10.1109/ICASSP39728.2021.9414362

Janocha, K., & Czarnecki, W. M. (2017). On Loss Functions for Deep Neural Networks in Classification. Schedae Informaticae, 1/2016. https://doi.org/10.4467/20838476SI.16.004.6185

Jiang, Z., Dong, Z., Wang, L., & Jiang, W. (2021). Method for Diagnosis of Acute Lymphoblastic Leukemia Based on ViT-CNN Ensemble Model. Computational Intelligence and Neuroscience, 2021, 1–12. https://doi.org/10.1155/2021/7529893

Kasani, P. H., Park, S.-W., & Jang, J.-W. (2020). An Aggregated-Based Deep Learning Method for Leukemic B-lymphoblast Classification. Diagnostics (Basel, Switzerland), 10(12), 1064. https://doi.org/10.3390/diagnostics10121064

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. https://doi.org/10.48550/ARXIV.1412.6980

Labati, R. D., Piuri, V., & Scotti, F. (2011). All-IDB: The acute lymphoblastic leukemia image database for image processing. 2011 18th IEEE International Conference on Image Processing, 2045–2048. https://doi.org/10.1109/ICIP.2011.6115881

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541

LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object Recognition with Gradient-Based Learning. In D. A. Forsyth, J. L. Mundy, V. di Gesú, & R. Cipolla, Shape, Contour and Grouping in Computer Vision (Vol. 1681, pp. 319–345). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-46805-6_19

Li, L., & Wang, Y. (2020). Recent updates for antibody therapy for acute lymphoblastic leukemia. Experimental Hematology & Oncology, 9(1), 33. https://doi.org/10.1186/s40164-020-00189-9

Nahid, A.-A., Sikder, N., Bairagi, A. K., Razzaque, Md. A., Masud, M., Z. Kouzani, A., & Mahmud, M. A. P. (2020). A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network. Sensors, 20(12), 3482. https://doi.org/10.3390/s20123482

Piuri, V., & Scotti, F. (2004). Morphological classification of blood leucocytes by microscope images. 2004 IEEE International Conference OnComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA., 103–108. https://doi.org/10.1109/CIMSA.2004.1397242

Puckett, Y., & Chan, O. (2023). Acute Lymphocytic Leukemia. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK459149/

Rehman, A., Abbas, N., Saba, T., Rahman, S. I. ur, Mehmood, Z., & Kolivand, H. (2018). Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 81(11), 1310–1317. https://doi.org/10.1002/jemt.23139

Sampathila, N., Chadaga, K., Goswami, N., Chadaga, R. P., Pandya, M., Prabhu, S., Bairy, M. G., Katta, S. S., Bhat, D., & Upadya, S. P. (2022). Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images. Healthcare, 10(10), 1812. https://doi.org/10.3390/healthcare10101812

Scotti, F. (2005). Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005., 96–101. https://doi.org/10.1109/CIMSA.2005.1522835

Scotti, F. (2006). Robust Segmentation and Measurements Techniques of White Cells in Blood Microscope Images. 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, 43–48. https://doi.org/10.1109/IMTC.2006.328170

Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi-scale Convolutional Networks. The 2011 International Joint Conference on Neural Networks, 2809–2813. https://doi.org/10.1109/IJCNN.2011.6033589

Shafique, S., & Tehsin, S. (2018). Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks. Technology in Cancer Research & Treatment, 17, 153303381880278. https://doi.org/10.1177/1533033818802789

Yang, R., Du, Y., Weng, X., Chen, Z., Wang, S., & Liu, X. (2021). Automatic recognition of bladder tumours using deep learning technology and its clinical application. The International Journal of Medical Robotics and Computer Assisted Surgery, 17(2). https://doi.org/10.1002/rcs.2194

Published

2024-01-30

How to Cite

Akbar, M., Prasetyaningrum, P. T., Setyaningsih, P. W., Ahsan, M., & Budianto, A. E. (2024). Deteksi Leukemia Limfoblastik Akut menggunakan Convolutional Neural Network. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 7(1), 292–297. https://doi.org/10.32493/jtsi.v7i1.34168