Deteksi Leukemia Limfoblastik Akut menggunakan Convolutional Neural Network
DOI:
https://doi.org/10.32493/jtsi.v7i1.34168Kata Kunci:
convolutional neural network; klasifikasi; leukemia limfoblastik akutAbstrak
Leukemia limfoblastik akut merupakan jenis leukemia anak yang paling penting, dan menyumbang 25% dari kanker anak. Membedakan secara akurat prekursor sel normal dari sel kanker adalah kunci diagnosis leukemia limfoblastik akut. Namun, di bawah mikroskop, sel kanker sangat mirip dengan sel normal sehingga sulit untuk mengklasifikasikannya. Artikel ini menyajikan deteksi sel leukemia limfoblastik akut menggunakan Convolutional Neural Network (CNN). Dataset diperoleh dari ALL_IDB sejumlah 582 data citra berwarna yang dibagi menjadi 482 data citra latih dan 100 data citra uji. Data citra tersebut akan diubah ukurannya menjadi 128x128x3 sebelum akhirnya menjadi masukan dari model CNN. Model CNN yang digunakan adalah multi-scale CNN yang terdiri dari 3 lapisan konvolusi (ukuran filter 3x3, jumlah filter untuk masing-masing lapisan konvolusi yakni berurutan 32, 64, dan 128, dan fungsi aktivasi ReLU), 3 lapisan subsampling menggunakan maxpool dengan ukuran filter 2x2, 1 lapisan penggabungan yang digunakan untuk menggabungkan keluaran dari masing-masing lapisan subsampling, 1 lapisan fully-connected dengan fungsi aktivasi softmax dan fungsi galat cross-entropy, dan terakhir lapisan keluaran dengan jumlah kelas 2 yakni sel normal dan sel kanker. Model CNN akan dilatih menggunakan algoritma pelatihan Adam optimizer dengan laju pelatihan 0.0002 dan dilakukan iterasi sebanyak 20 kali. Berdasarkan hasil pelatihan setelah diiterasi sebanyak 20 kali, didapatkan nilai galat terkecil yakni 0,0001 dan nilai akurasi terbesar yakni 100% pada epoch ke-20. Model CNN kemudian diuji dengan 100 data citra uji dan menghasilkan tingkat akurasi 98% dan nilai galat 0,0482.
Referensi
Ahmed, N., Yigit, A., Isik, Z., & Alpkocak, A. (2019). Identification of Leukemia Subtypes from Microscopic Images Using Convolutional Neural Network. Diagnostics (Basel, Switzerland), 9(3), 104. https://doi.org/10.3390/diagnostics9030104
Akbar, M., Purnomo, A. S., & Supatman, S. (2022). Multi-Scale Convolutional Networks untuk Pengenalan Rambu Lalu Lintas di Indonesia. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 310–315. https://doi.org/10.32736/sisfokom.v11i3.1452
Boldú, L., Merino, A., Alférez, S., Molina, A., Acevedo, A., & Rodellar, J. (2019). Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. Journal of Clinical Pathology, 72(11), 755–761. https://doi.org/10.1136/jclinpath-2019-205949
Daoud, M. I., Abdel-Rahman, S., Bdair, T. M., Al-Najar, M. S., Al-Hawari, F. H., & Alazrai, R. (2020). Breast Tumor Classification in Ultrasound Images Using Combined Deep and Handcrafted Features. Sensors, 20(23), 6838. https://doi.org/10.3390/s20236838
Fujita, T. C., Sousa-Pereira, N., Amarante, M. K., & Watanabe, M. A. E. (2021). Acute lymphoid leukemia etiopathogenesis. Molecular Biology Reports, 48(1), 817–822. https://doi.org/10.1007/s11033-020-06073-3
Genovese, A., Hosseini, M. S., Piuri, V., Plataniotis, K. N., & Scotti, F. (2021). Acute Lymphoblastic Leukemia Detection Based on Adaptive Unsharpening and Deep Learning. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1205–1209. https://doi.org/10.1109/ICASSP39728.2021.9414362
Janocha, K., & Czarnecki, W. M. (2017). On Loss Functions for Deep Neural Networks in Classification. Schedae Informaticae, 1/2016. https://doi.org/10.4467/20838476SI.16.004.6185
Jiang, Z., Dong, Z., Wang, L., & Jiang, W. (2021). Method for Diagnosis of Acute Lymphoblastic Leukemia Based on ViT-CNN Ensemble Model. Computational Intelligence and Neuroscience, 2021, 1–12. https://doi.org/10.1155/2021/7529893
Kasani, P. H., Park, S.-W., & Jang, J.-W. (2020). An Aggregated-Based Deep Learning Method for Leukemic B-lymphoblast Classification. Diagnostics (Basel, Switzerland), 10(12), 1064. https://doi.org/10.3390/diagnostics10121064
Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. https://doi.org/10.48550/ARXIV.1412.6980
Labati, R. D., Piuri, V., & Scotti, F. (2011). All-IDB: The acute lymphoblastic leukemia image database for image processing. 2011 18th IEEE International Conference on Image Processing, 2045–2048. https://doi.org/10.1109/ICIP.2011.6115881
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541
LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object Recognition with Gradient-Based Learning. In D. A. Forsyth, J. L. Mundy, V. di Gesú, & R. Cipolla, Shape, Contour and Grouping in Computer Vision (Vol. 1681, pp. 319–345). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-46805-6_19
Li, L., & Wang, Y. (2020). Recent updates for antibody therapy for acute lymphoblastic leukemia. Experimental Hematology & Oncology, 9(1), 33. https://doi.org/10.1186/s40164-020-00189-9
Nahid, A.-A., Sikder, N., Bairagi, A. K., Razzaque, Md. A., Masud, M., Z. Kouzani, A., & Mahmud, M. A. P. (2020). A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network. Sensors, 20(12), 3482. https://doi.org/10.3390/s20123482
Piuri, V., & Scotti, F. (2004). Morphological classification of blood leucocytes by microscope images. 2004 IEEE International Conference OnComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA., 103–108. https://doi.org/10.1109/CIMSA.2004.1397242
Puckett, Y., & Chan, O. (2023). Acute Lymphocytic Leukemia. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK459149/
Rehman, A., Abbas, N., Saba, T., Rahman, S. I. ur, Mehmood, Z., & Kolivand, H. (2018). Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 81(11), 1310–1317. https://doi.org/10.1002/jemt.23139
Sampathila, N., Chadaga, K., Goswami, N., Chadaga, R. P., Pandya, M., Prabhu, S., Bairy, M. G., Katta, S. S., Bhat, D., & Upadya, S. P. (2022). Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images. Healthcare, 10(10), 1812. https://doi.org/10.3390/healthcare10101812
Scotti, F. (2005). Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005., 96–101. https://doi.org/10.1109/CIMSA.2005.1522835
Scotti, F. (2006). Robust Segmentation and Measurements Techniques of White Cells in Blood Microscope Images. 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, 43–48. https://doi.org/10.1109/IMTC.2006.328170
Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi-scale Convolutional Networks. The 2011 International Joint Conference on Neural Networks, 2809–2813. https://doi.org/10.1109/IJCNN.2011.6033589
Shafique, S., & Tehsin, S. (2018). Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks. Technology in Cancer Research & Treatment, 17, 153303381880278. https://doi.org/10.1177/1533033818802789
Yang, R., Du, Y., Weng, X., Chen, Z., Wang, S., & Liu, X. (2021). Automatic recognition of bladder tumours using deep learning technology and its clinical application. The International Journal of Medical Robotics and Computer Assisted Surgery, 17(2). https://doi.org/10.1002/rcs.2194
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Mutaqin Akbar, Putri Taqwa Prasetyaningrum, Putry Wahyu Setyaningsih, Moh Ahsan, Alexius Endy Budianto
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms