Deteksi Leukemia Limfoblastik Akut menggunakan Convolutional Neural Network

Penulis

  • Mutaqin Akbar Universitas Mercu Buana Yogyakarta
  • Putri Taqwa Prasetyaningrum Universitas Mercu Buana Yogyakarta
  • Putry Wahyu Setyaningsih Universitas Mercu Buana Yogyakarta
  • Moh Ahsan Universitas PGRI Kanjuruhan Malang
  • Alexius Endy Budianto Universitas PGRI Kanjuruhan Malang

DOI:

https://doi.org/10.32493/jtsi.v7i1.34168

Kata Kunci:

convolutional neural network; klasifikasi; leukemia limfoblastik akut

Abstrak

Leukemia limfoblastik akut merupakan jenis leukemia anak yang paling penting, dan menyumbang 25% dari kanker anak. Membedakan secara akurat prekursor sel normal dari sel kanker adalah kunci diagnosis leukemia limfoblastik akut. Namun, di bawah mikroskop, sel kanker sangat mirip dengan sel normal sehingga sulit untuk mengklasifikasikannya. Artikel ini menyajikan deteksi sel leukemia limfoblastik akut menggunakan Convolutional Neural Network (CNN). Dataset diperoleh dari ALL_IDB sejumlah 582 data citra berwarna yang dibagi menjadi 482 data citra latih dan 100 data citra uji. Data citra tersebut akan diubah ukurannya menjadi 128x128x3 sebelum akhirnya menjadi masukan dari model CNN. Model CNN yang digunakan adalah multi-scale CNN yang terdiri dari 3 lapisan konvolusi (ukuran filter 3x3, jumlah filter untuk masing-masing lapisan konvolusi yakni berurutan 32, 64, dan 128, dan fungsi aktivasi ReLU), 3 lapisan subsampling menggunakan maxpool dengan ukuran filter 2x2, 1 lapisan penggabungan yang digunakan untuk menggabungkan keluaran dari masing-masing lapisan subsampling, 1 lapisan fully-connected dengan fungsi aktivasi softmax dan fungsi galat cross-entropy, dan terakhir lapisan keluaran dengan jumlah kelas 2 yakni sel normal dan sel kanker. Model CNN akan dilatih menggunakan algoritma pelatihan Adam optimizer dengan laju pelatihan 0.0002 dan dilakukan iterasi sebanyak 20 kali. Berdasarkan hasil pelatihan setelah diiterasi sebanyak 20 kali, didapatkan nilai galat terkecil yakni 0,0001 dan nilai akurasi terbesar yakni 100% pada epoch ke-20. Model CNN kemudian diuji dengan 100 data citra uji dan menghasilkan tingkat akurasi 98% dan nilai galat 0,0482.

Referensi

Ahmed, N., Yigit, A., Isik, Z., & Alpkocak, A. (2019). Identification of Leukemia Subtypes from Microscopic Images Using Convolutional Neural Network. Diagnostics (Basel, Switzerland), 9(3), 104. https://doi.org/10.3390/diagnostics9030104

Akbar, M., Purnomo, A. S., & Supatman, S. (2022). Multi-Scale Convolutional Networks untuk Pengenalan Rambu Lalu Lintas di Indonesia. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 310–315. https://doi.org/10.32736/sisfokom.v11i3.1452

Boldú, L., Merino, A., Alférez, S., Molina, A., Acevedo, A., & Rodellar, J. (2019). Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. Journal of Clinical Pathology, 72(11), 755–761. https://doi.org/10.1136/jclinpath-2019-205949

Daoud, M. I., Abdel-Rahman, S., Bdair, T. M., Al-Najar, M. S., Al-Hawari, F. H., & Alazrai, R. (2020). Breast Tumor Classification in Ultrasound Images Using Combined Deep and Handcrafted Features. Sensors, 20(23), 6838. https://doi.org/10.3390/s20236838

Fujita, T. C., Sousa-Pereira, N., Amarante, M. K., & Watanabe, M. A. E. (2021). Acute lymphoid leukemia etiopathogenesis. Molecular Biology Reports, 48(1), 817–822. https://doi.org/10.1007/s11033-020-06073-3

Genovese, A., Hosseini, M. S., Piuri, V., Plataniotis, K. N., & Scotti, F. (2021). Acute Lymphoblastic Leukemia Detection Based on Adaptive Unsharpening and Deep Learning. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1205–1209. https://doi.org/10.1109/ICASSP39728.2021.9414362

Janocha, K., & Czarnecki, W. M. (2017). On Loss Functions for Deep Neural Networks in Classification. Schedae Informaticae, 1/2016. https://doi.org/10.4467/20838476SI.16.004.6185

Jiang, Z., Dong, Z., Wang, L., & Jiang, W. (2021). Method for Diagnosis of Acute Lymphoblastic Leukemia Based on ViT-CNN Ensemble Model. Computational Intelligence and Neuroscience, 2021, 1–12. https://doi.org/10.1155/2021/7529893

Kasani, P. H., Park, S.-W., & Jang, J.-W. (2020). An Aggregated-Based Deep Learning Method for Leukemic B-lymphoblast Classification. Diagnostics (Basel, Switzerland), 10(12), 1064. https://doi.org/10.3390/diagnostics10121064

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. https://doi.org/10.48550/ARXIV.1412.6980

Labati, R. D., Piuri, V., & Scotti, F. (2011). All-IDB: The acute lymphoblastic leukemia image database for image processing. 2011 18th IEEE International Conference on Image Processing, 2045–2048. https://doi.org/10.1109/ICIP.2011.6115881

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541

LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object Recognition with Gradient-Based Learning. In D. A. Forsyth, J. L. Mundy, V. di Gesú, & R. Cipolla, Shape, Contour and Grouping in Computer Vision (Vol. 1681, pp. 319–345). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-46805-6_19

Li, L., & Wang, Y. (2020). Recent updates for antibody therapy for acute lymphoblastic leukemia. Experimental Hematology & Oncology, 9(1), 33. https://doi.org/10.1186/s40164-020-00189-9

Nahid, A.-A., Sikder, N., Bairagi, A. K., Razzaque, Md. A., Masud, M., Z. Kouzani, A., & Mahmud, M. A. P. (2020). A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network. Sensors, 20(12), 3482. https://doi.org/10.3390/s20123482

Piuri, V., & Scotti, F. (2004). Morphological classification of blood leucocytes by microscope images. 2004 IEEE International Conference OnComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA., 103–108. https://doi.org/10.1109/CIMSA.2004.1397242

Puckett, Y., & Chan, O. (2023). Acute Lymphocytic Leukemia. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK459149/

Rehman, A., Abbas, N., Saba, T., Rahman, S. I. ur, Mehmood, Z., & Kolivand, H. (2018). Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 81(11), 1310–1317. https://doi.org/10.1002/jemt.23139

Sampathila, N., Chadaga, K., Goswami, N., Chadaga, R. P., Pandya, M., Prabhu, S., Bairy, M. G., Katta, S. S., Bhat, D., & Upadya, S. P. (2022). Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images. Healthcare, 10(10), 1812. https://doi.org/10.3390/healthcare10101812

Scotti, F. (2005). Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005., 96–101. https://doi.org/10.1109/CIMSA.2005.1522835

Scotti, F. (2006). Robust Segmentation and Measurements Techniques of White Cells in Blood Microscope Images. 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, 43–48. https://doi.org/10.1109/IMTC.2006.328170

Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi-scale Convolutional Networks. The 2011 International Joint Conference on Neural Networks, 2809–2813. https://doi.org/10.1109/IJCNN.2011.6033589

Shafique, S., & Tehsin, S. (2018). Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks. Technology in Cancer Research & Treatment, 17, 153303381880278. https://doi.org/10.1177/1533033818802789

Yang, R., Du, Y., Weng, X., Chen, Z., Wang, S., & Liu, X. (2021). Automatic recognition of bladder tumours using deep learning technology and its clinical application. The International Journal of Medical Robotics and Computer Assisted Surgery, 17(2). https://doi.org/10.1002/rcs.2194

Unduhan

Diterbitkan

2024-01-30

Cara Mengutip

Akbar, M., Prasetyaningrum, P. T., Setyaningsih, P. W., Ahsan, M., & Budianto, A. E. (2024). Deteksi Leukemia Limfoblastik Akut menggunakan Convolutional Neural Network. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 7(1), 292–297. https://doi.org/10.32493/jtsi.v7i1.34168