Klasifikasi Anomali Intrusion Detection System (IDS) Menggunakan Algoritma Naïve Bayes Classifier dan Correlation-Based Feature Selection

Authors

  • Saipul Anwar Universitas Tanri Abeng
  • Fajar Septian Universitas Pamulang
  • Ristasari Dwi Septiana STMIK ERESHA

Keywords:

correlation-based fetaure selection, classification, data mining, intrusion detection system, naïve bayes

Abstract

Intrusion Detection System (IDS) is useful for detecting an attack or disturbance on a network or information system. Anomaly detection is a type of IDS that can detect a deviate attack on the network based on statistical probability. The increasing use of the internet also increases interference or attacks from intruders or crackers that exploit weak internet protocols and application software. When many data packets arrive, a problem arises that needs to be analyzed. The right technique to analyze the data package is data mining. This study aims to classify IDS anomalies using the Naïve Bayes classification algorithm from the results of attribute selection with correlation-based feature selection. This study uses a UNSW-NB15 intrusion detection system data collection consisting of 49 attributes and 321,283 data records. Performance measurements are based on accuracy, precision, F-Measure and ROC Area. The results of attribute selection with correlation-based feature selection leave 4 attributes. The results of the evaluation of IDS anomaly classification using the naïve Bayes algorithm without the precedence of the attributes selected by the correlation technique obtained an accuracy rate of 71.2%. While the classification results if preceded by the attributes selected by the correlation technique obtained an accuracy of 74.8%. Classification with the naïve Bayes algorithm can be improved its accuracy which is preceded by the selection of attributes with correlation techniques.

References

Galih. (2019). Data Mining di Bidang Pendidikan untuk Analisa Prediksi Kinerja Mahasiswa dengan Komparasi 2 Model Klasifikasi pada STMIK Jabar. Jurnal Teknologi Sistem Informasi dan Aplikasi, 2(1), 23-30.

Gostev, A., & Namestnikov, Y. (2011, Februari 17). Kaspersky Security Bulletin 2010. Statistics, 2010. Retrieved Agustus 10, 2019, from Kaspersky Securelist: https://securelist.com/kaspersky-security-bulletin-2010-statistics-2010/36345/

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques Third Edition. USA: Elsevier.

Khaerani, I., & Handoko, B. (2015). Implementasi Dan Analisa Hasil Data Mining Untuk Klasifikasi Serangan Pada Intrusion Detection System (IDS) Dengan Algoritma C4.5. Techno.COM, 14(3), 181-188.

Lazarevic, A., Srivastava, J., & Kumar, V. (2018, August 3). Data Mining For Intrusion Detection Tutorial on the Pacific-Asia Conference on Knowledge Discovery in Databases 2003. Retrieved August 10, 2019, from iDoc Slide: https://idocslide.org/document/data-mining-for-intrusion-detection-tutorial-on-the-pacific-asia-conference-on-knowledge-discovery-in-databases-2003

Moustafa, N., & Slay, J. (2015). UNSW-NB15: A Comprehensive Data set for Network Intrusion Detection systems (UNSW-NB15 Network Data Set). Military Communications and Information Systems Conference (MilCIS). IEEE.

Prasetyo, E. (2012). Klasifikasi Naive bayes. Jawa Timur: Teknik Informatika, Universitas Pembangunan Nasional “Veteranâ€.

Santosa, B. (2007). Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu.

Wirawan, I. T., & Eksistyanto, I. (2015). Penerapan Naive Bayes Pada Intrusion Detection System Dengan Diskritisasi Variabel. JUTI: Jurnal Ilmiah Teknologi Informasi, 13(2), 182-189.

Wu, T. (2009). Information Assurance Tools Report – Intrusion Detection Systems Sixth Edition. Defense Technical Information Center, Information Assurance Technology Analysis Center (IATAC). Herndon, United States: IATAC.

Published

2019-10-30

How to Cite

Anwar, S., Septian, F., & Septiana, R. D. (2019). Klasifikasi Anomali Intrusion Detection System (IDS) Menggunakan Algoritma Naïve Bayes Classifier dan Correlation-Based Feature Selection. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 2(4), 135–140. Retrieved from https://openjournal.unpam.ac.id/index.php/JTSI/article/view/3453