Klasifikasi Tingkat Kematangan Buah Pisang Raja Menggunakan Metode CNN Berbasis Android
DOI:
https://doi.org/10.32493/jtsi.v7i1.37790Keywords:
classification; plantain; Cnn; AndroidAbstract
Raja banana (Musa paradisiaca L.) is a banana cultivar commonly enjoyed in Indonesia. In addition to being consumed as a fresh fruit, Pisang Raja is often processed into various banana-based foods, such as banana chips, fried bananas, banana fritters, and other banana products. For farmers, post-harvest sorting of Pisang Raja requires a significant amount of time and effort. Therefore, a system is needed to assist farmers and the community in general to determine the ripeness level of Pisang Raja fruit more efficiently and clearly. The classification process of Pisang Raja fruit ripeness levels is carried out through precision calculations in a system, using a dataset consisting of 300 images covering 3 types of Pisang Raja ripeness levels. The classification process for the ripeness levels of Pisang Raja fruit utilizes the Convolutional Neural Network (CNN) method with the TensorFlow module for training and testing data. Based on experimental results, the accuracy in classifying the ripeness levels of Pisang Raja fruit reaches a value of 95%."
References
Utami, REZKI NURFADILLAH. "Uji Efektivitas Ekstrak Kulit Pisang Raja (Musa paradisiaca var. Raja) Terhadap Penurunan Kadar Gula Darah Mencit Jantan (Mus musculuss)." (2016).
Hanifah, A. I., & Hermawan, A. (2023). Klasifikasi Kematangan Pisang Menggunakan Metode Convolutional Neural Network. Komputika: Jurnal Sistem Komputer, 12(2), 49-56.
Rusmita, Sylva Alif, et al. "Monitoring of Islamic Finance Activity to Economic Growth: An Indonesia Experience (2009-2023)." Fintech Applications in Islamic Finance: AI, Machine Learning, and Blockchain Techniques. IGI Global, 2024. 191-210.
Khan, S., H. Rahmani, S. Shah, and D.M Bennamoun. (2018). A Guide to Convolutional Neural Networks for Computer Vision. New York: Morgan & Claypool Publishers
Chen, Ruifeng, dkk. "Efektivitas rokok elektrik sebagai alat bantu berhenti merokok: bukti dari kelompok Studi PATH, 2017–2019." Pengendalian Tembakau 32.e2 (2023): e145-e152.
Paliwang, Zainal Arifin, dkk. “Kebijakan Inovatif Pembangunan Sosial Ekonomi Masyarakat Perbatasan Pesisir Nunukan Kalimantan Utara.†Ilmu Sosial KnE (2020): 779-787.
Lee, Chen-Yu, dkk. "Jaring yang diawasi secara mendalam." Kecerdasan buatan dan statistik. Pmlr, 2015.
Wijaya, Dedy Rahman, dkk. "Mengumpulkan pendekatan pembelajaran mesin untuk pemrosesan sinyal hidung elektronik." Penelitian Penginderaan dan Bio-Sensing 36 (2022): 100495.
ARIFIANTO, JULY. "Aplikasi Web Pendeteksi Jerawat Pada Wajah Menggunakan Model Deep Learning Dengan Tensorflow." (2022).
Pang, B., Nijkamp, E., & Wu, YN (2020). Pembelajaran mendalam dengan tensorflow: Sebuah ulasan. Jurnal Statistik Pendidikan dan Perilaku, 45 (2), 227-248.
Tashildar, Aakanksha, dkk. "Pengembangan aplikasi menggunakan flutter." Jurnal Penelitian Internasional Modernisasi dalam Teknologi dan Sains Rekayasa 2.8 (2020): 1262-1266.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Trissa Noor Aulia Febriana, Veronica Lusiana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms