Penerapan Algoritma Backpropagation untuk Prediksi Hasil Panen Padi di Kabupaten Labuhan Batu Utara
DOI:
https://doi.org/10.32493/jtsi.v7i1.38318Keywords:
Rice; JST; RMSEAbstract
Rice is a food crop that has vital benefits and important benefits for human survival. Rice plants are often found in the surrounding environment, especially those living in rural areas. Farmers use various methods to continue to increase rice yields. However, in reality the rice harvest results are not stable from year to year, this is because farmers' businesses still depend on natural factors which have a risk of causing a high chance of crop failure, thus accumulating the risk of low income received by farmers, including in the Regency. North Labauhanbatu so a prediction is needed to find out the future picture of the rice harvest. Predictions are also made so that lowland rice production remains stable. One way that is often used to make predictions is to use artificial neural networks. Artificial Neural Networks (ANN) are designed based on the structure and function of the human brain as a model of intuitive imitation. In an artificial neural network there are a number of neurons. One network can connect to many other networks, and each connection (link) has a weight (weight). Prediction of rice harvest results in Kabuipatein Labuihan Batui Uitara using the backpropagation algorithm. The results of trials carried out with the Rapid Mineir architectural model software with an RMSEi amount of 0.403 +/- 0.000 in the implementation of backpropagation. The smaller the RMSEi (Root Meian Squiareid Eirror) the better the teirseibuit model.
References
Alimuddin, A. (2020). Teori dan Aplikasi Dasar Sistem Kendali Cerdas. Untirta Press.
Ambarwati, A. (2019). Nusantara dalam Piringku. Gramedia Pustaka Utama.
Cahyaningtyas, C., Manongga, D., & Sembiring, I. (2022). Algorithm Comparison and Feature Selection for Classification of Broiler Chicken Harvest. Jurnal Teknik Informatika (Jutif), 3(6), 1717–1727.
Hidayat, R., & Darussalam, U. (2022). Perbandingan Metode Saw Dan Ahp Pada Sistem Pendukung Keputusan Web Based Seleksi Karyawan Terbaik. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(1), 209–223. https://doi.org/10.29100/jipi.v7i1.2627
Irnanda, K. F., Windarto, A. P., & Damanik, I. S. (2022). Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner. JURIKOM (Jurnal Riset Komputer), 9(1), 122–130.
Kaswanto, R. L., Aurora, R. M., Yusri, D., Sjaf, S., & Barus, S. (2021). Kesesuaian lahan untuk komoditas unggulan pertanian di Kabupaten Labuhanbatu Utara. Analisis Kebijakan Pertanian, 19(2), 189–205.
Kusumastuti, A., Khoiron, A. M., & Achmadi, T. A. (2020). Metode Penelitian Kuantitatif. Deepublish. Medan.
Maiyuriska, R. (2022). Penerapan Jaringan Syaraf Tiruan dengan Algoritma Backpropagation dalam Memprediksi Hasil Panen Gabah Padi. Jurnal Informatika Ekonomi Bisnis, 28–33.
Mukhtar, H., Rifaldo, M., Taufiq, R. M., & Rizki, Y. (2021). Peramalan Kedatangan Wisatawan Mancanegara ke Indonesia Menurut Kebangsaan Perbulannya Menggunakan Metode Multilayer Perceptron. Jurnal CoSciTech (Computer Science and Information Technology), 2(2), 113–119.
Pellokila, V. A. A., Usman, K., & Pratiwi, N. K. C. (2023). Pemanfaatan Convolutional Neural Network (Cnn) Untuk Klasifikasi Jenis Beras Berbasis Citra. EProceedings of Engineering, 10(5) : 1-10.
Rahmadani, F., Pardede, A. M. H., & Nurhayati, N. (2021). Jaringan Syaraf Tiruan Prediksi Jumlah Pengiriman Barang Menggunakan Metode Backpropagation (Studi kasus: Kantor Pos Binjai). JTIK (Jurnal Teknik Informatika Kaputama), 5(1), 100–106.
Ramadhan, M. A. (2020). Penerapan Farm From Home Melalui Kegiatan Vertikultur sebagai Solusi Antisipatif terhadap Krisis Ketahanan Pangan Akibat Pandemi Covid-19. Minda Mahasiswa Indonesia: Antisipasi Resesi dan Krisis Pangan Akibat Pandemi, 5(5) : 1-10.
Sitepu, N. L. B. (2021). Jaringan Saraf Tiruan Memprediksi Nilai Pemelajaran Siswa Dengan Metode Backpropagation (Studi kasus: SMP Negeri 1 Salapian). Journal of Information and Technology, 1(2), 54–58.
Wahyudi, T. (2020). Pengelolaan Komoditas Hortikultura Unggulan Berbasis Lingkungan. Jurnal Biologi, 2(1) : 1-10.
Wardani, D. K., Panunggul, V. B., Ibrahim, E., Laeshita, P., Rachmawati, Y. S., Tuhuteru, S., & Nugrahani, R. A. G. (2023). Dasar Agronomi. Tohar Media. Deepublish. Medan.
Yuniar, R. (2022). Jembatan Emas Ketahanan Pangan-Perspektif Komunikasi. Yayasan Pustaka Obor Indonesia. Jakarta.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ahmad Fauza Anshori Tbn, Rakhmat Kurniawan R.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms