Implementasi Data Mining Klasterisasi Data Pasien Rawat Inap dengan Algoritma K-Means Clustering
DOI:
https://doi.org/10.32493/jtsi.v7i2.39354Keywords:
Data Mining; K-means Clustering; Medical Record; Health ManagementAbstract
Medical records are data about the history of patients who receive treatment at health care institutions. Along with the development of technology, most healthcare services in Indonesia have now switched from paper-based medical records to digital ones to speed up healthcare services. Despite the good impact of digital medical records, there are various problems, especially for handling huge medical record data. Efficient and effective processing of medical record data is essential to improve the quality of health services. This research utilizes inpatient medical record data into several groups by using the data mining clustering method using the k-means clustering algorithm to handle very large and complicated data by grouping inpatient data into several clusters. Data mining k-means clustering can help organize and analyze medical record data more effectively, so as to improve service quality. The results obtained from this study are inpatient data divided into 4 clusters with 2 variables, namely age category and diagnosis. The results of this analysis obtained data from each cluster, namely cluster 0 disease categories of arthritis, asthma, and cancer patients with adolescent and elderly age categories, cluster 1 disease categories of diabetes, hypertension, and obesity patients with adolescent and elderly age categories, cluster 2 disease categories of diabetes, hypertension, and obesity patients with adult age categories, cluster 3 disease categories of arthritis, asthma, and cancer patients with adult age categories, with a total of 10,000 patients. The findings of this study provide information about the spread of diseases based on the age range of patients, which can be the basis for minimizing the spread of diseases based on age range.
References
Adiputra, I. N. M. (2022). Clustering Penyakit Dbd Pada Rumah Sakit Dharma Kerti Menggunakan Algoritma K-Means. INSERT : Information System and Emerging Technology Journal, 2(2), 99. https://doi.org/10.23887/insert.v2i2.41673
Adiyanti, R., Sulaksana, P. T., Syahidin, Y., & Hidayati, M. (2021). Jurnal Teknologi dan Manajemen Informatika Perancangan Sistem Informasi Indeks Penyakit Rawat Inap Menggunakan Microsoft Visual Studio. 7(1), 10–19.
Azhari, R., Hartama, D., Lubis, M. R., Nasution, D. F., & Windarto, A. P. (2023). Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering. Journal of Informatics, Electrical and Electronics Engineering, 3(2), 221–235. https://doi.org/10.47065/jieee.v3i2.1760
Fajri, M. B., & Purnamasari, S. D. (2022). Klasterisasi Pola Penyebaran Penyakit Pasien Berdasarkan Usia Pasien Menggunakan K-Means Clustering. Journal of Information Technology Ampera, 3(3), 317–334. https://journal-computing.org/index.php/journal-ita/index
Ideal, M. A. V. (2022). Classification of Patient Complaints against Patient Medical Record Data Using the K Means Method. Jurnal Sistim Informasi Dan Teknologi, 5, 1–6. https://doi.org/10.37034/jsisfotek.v5i1.151
Melania, R., Abdussalaam, F., Yunengsih, Y., Info, A., & Kunci, K. (2024). Tata Kelola Rekam Medis Berbasis Elektronik Pengelolaan Laporan Harian Rawat Inap Dengan Metode Waterfall. DECODE: Jurnal Pendidikan Teknologi Informasi, 4(1), 167–178.
Nanda, dkk.,. (2023). Analisis Data Mining Untuk Klasterisasi Data Rekam Medis Menggunakan Algoritma K-Means Pada Rumah Sakit Sylvani Binjai. Indonesian Journal of Education And Computer Science, 1(3), 82–88.
Purba, W., Sembiring, G. A., Saputra, A., Turnip, T., Jua, B., Manihuruk, I., Sains, F., & Teknologi, D. (2023). Penerapan Data Mining untuk Pengelolaan Data Rekam Medis Menggunakan Metode K-Means Clustering pada Rumah Sakit Royal Prima Medan. Jurnal TEKINKOM, 6(1). https://doi.org/10.37600/tekinkom.v6i1.857
Rosdyana, A., Khaira, K. N., Syahidin, Y., & Yunengsih, Y. (2023). Governance of Online Electronic Patient Medical Records Distribution. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 11(2), 221–232. https://doi.org/10.33558/piksel.v11i2.6997
Saputra Sy, Y. (2022). Klasterisasi Pasien Rawat Inap Peserta BPJS Berdasarkan Jenis Penyakit Menggunakan Algoritma K-Means. Jurnal Sistim Informasi Dan Teknologi, 5, 33–37. https://doi.org/10.37034/jsisfotek.v5i2.162
Sari, M., & Asmendri, A. (2020). Penelitian Kepustakaan (Library Research) dalam Penelitian Pendidikan IPA. Natural Science, 6(1), 41–53. https://doi.org/10.15548/nsc.v6i1.1555
Tambuwun, C. H., Langi, Y. A. R., & Rindengan, A. J. (2020). Estimasi Bobot Parameter M Pada Fuzzy C-Means Menggunakan Analisis Robust Dengan Simulasi Data Spasial. D’CARTESIAN, 9(1), 50. https://doi.org/10.35799/dc.9.1.2020.27600
Yuda Syahidin, Aditya Pratama Ismail, & Fawwaz Nafis Siraj. (2022). Application of Artificial Neural Network Algorithms to Heart Disease Prediction Models with Python Programming. Jurnal E-Komtek (Elektro-Komputer-Teknik), 6(2), 292–302. https://doi.org/10.37339/e-komtek.v6i2.932
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bagas Laksono, Yuda Syahidin, Yuyun Yunengsih
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms