Implementasi Data Mining Klasterisasi Data Pasien Rawat Inap dengan Algoritma K-Means Clustering

Authors

  • Bagas Laksono Politeknik Piksi Ganesha
  • Yuda Syahidin Politeknik Piksi Ganesha
  • Yuyun Yunengsih Politeknik Piksi Ganesha

DOI:

https://doi.org/10.32493/jtsi.v7i2.39354

Keywords:

Data Mining; K-means Clustering; Medical Record; Health Management

Abstract

Medical records are data about the history of patients who receive treatment at health care institutions. Along with the development of technology, most healthcare services in Indonesia have now switched from paper-based medical records to digital ones to speed up healthcare services. Despite the good impact of digital medical records, there are various problems, especially for handling huge medical record data. Efficient and effective processing of medical record data is essential to improve the quality of health services. This research utilizes inpatient medical record data into several groups by using the data mining clustering method using the k-means clustering algorithm to handle very large and complicated data by grouping inpatient data into several clusters. Data mining k-means clustering can help organize and analyze medical record data more effectively, so as to improve service quality. The results obtained from this study are inpatient data divided into 4 clusters with 2 variables, namely age category and diagnosis. The results of this analysis obtained data from each cluster, namely cluster 0 disease categories of arthritis, asthma, and cancer patients with adolescent and elderly age categories, cluster 1 disease categories of diabetes, hypertension, and obesity patients with adolescent and elderly age categories, cluster 2 disease categories of diabetes, hypertension, and obesity patients with adult age categories, cluster 3 disease categories of arthritis, asthma, and cancer patients with adult age categories, with a total of 10,000 patients. The findings of this study provide information about the spread of diseases based on the age range of patients, which can be the basis for minimizing the spread of diseases based on age range.

References

Adiputra, I. N. M. (2022). Clustering Penyakit Dbd Pada Rumah Sakit Dharma Kerti Menggunakan Algoritma K-Means. INSERT : Information System and Emerging Technology Journal, 2(2), 99. https://doi.org/10.23887/insert.v2i2.41673

Adiyanti, R., Sulaksana, P. T., Syahidin, Y., & Hidayati, M. (2021). Jurnal Teknologi dan Manajemen Informatika Perancangan Sistem Informasi Indeks Penyakit Rawat Inap Menggunakan Microsoft Visual Studio. 7(1), 10–19.

Azhari, R., Hartama, D., Lubis, M. R., Nasution, D. F., & Windarto, A. P. (2023). Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering. Journal of Informatics, Electrical and Electronics Engineering, 3(2), 221–235. https://doi.org/10.47065/jieee.v3i2.1760

Fajri, M. B., & Purnamasari, S. D. (2022). Klasterisasi Pola Penyebaran Penyakit Pasien Berdasarkan Usia Pasien Menggunakan K-Means Clustering. Journal of Information Technology Ampera, 3(3), 317–334. https://journal-computing.org/index.php/journal-ita/index

Ideal, M. A. V. (2022). Classification of Patient Complaints against Patient Medical Record Data Using the K Means Method. Jurnal Sistim Informasi Dan Teknologi, 5, 1–6. https://doi.org/10.37034/jsisfotek.v5i1.151

Melania, R., Abdussalaam, F., Yunengsih, Y., Info, A., & Kunci, K. (2024). Tata Kelola Rekam Medis Berbasis Elektronik Pengelolaan Laporan Harian Rawat Inap Dengan Metode Waterfall. DECODE: Jurnal Pendidikan Teknologi Informasi, 4(1), 167–178.

Nanda, dkk.,. (2023). Analisis Data Mining Untuk Klasterisasi Data Rekam Medis Menggunakan Algoritma K-Means Pada Rumah Sakit Sylvani Binjai. Indonesian Journal of Education And Computer Science, 1(3), 82–88.

Purba, W., Sembiring, G. A., Saputra, A., Turnip, T., Jua, B., Manihuruk, I., Sains, F., & Teknologi, D. (2023). Penerapan Data Mining untuk Pengelolaan Data Rekam Medis Menggunakan Metode K-Means Clustering pada Rumah Sakit Royal Prima Medan. Jurnal TEKINKOM, 6(1). https://doi.org/10.37600/tekinkom.v6i1.857

Rosdyana, A., Khaira, K. N., Syahidin, Y., & Yunengsih, Y. (2023). Governance of Online Electronic Patient Medical Records Distribution. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 11(2), 221–232. https://doi.org/10.33558/piksel.v11i2.6997

Saputra Sy, Y. (2022). Klasterisasi Pasien Rawat Inap Peserta BPJS Berdasarkan Jenis Penyakit Menggunakan Algoritma K-Means. Jurnal Sistim Informasi Dan Teknologi, 5, 33–37. https://doi.org/10.37034/jsisfotek.v5i2.162

Sari, M., & Asmendri, A. (2020). Penelitian Kepustakaan (Library Research) dalam Penelitian Pendidikan IPA. Natural Science, 6(1), 41–53. https://doi.org/10.15548/nsc.v6i1.1555

Tambuwun, C. H., Langi, Y. A. R., & Rindengan, A. J. (2020). Estimasi Bobot Parameter M Pada Fuzzy C-Means Menggunakan Analisis Robust Dengan Simulasi Data Spasial. D’CARTESIAN, 9(1), 50. https://doi.org/10.35799/dc.9.1.2020.27600

Yuda Syahidin, Aditya Pratama Ismail, & Fawwaz Nafis Siraj. (2022). Application of Artificial Neural Network Algorithms to Heart Disease Prediction Models with Python Programming. Jurnal E-Komtek (Elektro-Komputer-Teknik), 6(2), 292–302. https://doi.org/10.37339/e-komtek.v6i2.932

Published

2024-04-30

How to Cite

Laksono, B., Syahidin, Y., & Yunengsih, Y. (2024). Implementasi Data Mining Klasterisasi Data Pasien Rawat Inap dengan Algoritma K-Means Clustering. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 7(2), 621–627. https://doi.org/10.32493/jtsi.v7i2.39354