Simulasi Prakiraan dan Klasifikasi Hujan Wilayah Kota Jakarta dengan Metode Decision Tree
Keywords:
Weather Data, Data Mining, Decision treeAbstract
Rain is a natural occurrence that occurs in the hydrological and climatic circulation. Based on the ups and downs of the hydrological circulation, one of the sources of water is rain. rain is very useful in life, because rain can meet the needs of water for living creatures. However, rain can also cause floods. A flood tragedy can cause loss and casualties. Then our activities are checking the forecast simulation forecast and rain classification using the accurate decision tree method. We take forecast and classification data because the weather in DKI Jakarta is currently very difficult to predict. Next, we use a decision tree for data mining with a dataset spanning 5 years from 2011-2015. The problem here is the weather in DKI Jakarta which is very difficult to predict.
References
Dhawangkhara, M., & Riksakomara, E. (2017). Prediksi Intensitas Hujan Kota Surabaya dengan Matlab menggunakan Teknik Random Forest dan CART (Studi Kasus Kota Surabaya). Jurnal Teknik ITS, 6(1), 94-99.
Gunadi, I. G., & Dewi, A. A. (2018). Klasifikasi Curah Hujan di Provinsi Bali Berdasarkan Metode Naïve Bayesian. Wahana Matematika dan Sains: Jurnal Matematika, Sains, dan Pembelajarannya, 12(1), 14-25.
Laia, M. L., & Setyawan, Y. (2020). Perbandingan Hasil Klasifikasi Curah Hujan Menggunakan Metode SVM dan NBC. Jurnal Statistika Industri dan Komputasi, 5(2), 51-61.
Lumbansiantar, D. S. (2019). Analisa Data Bencana Alam Untuk Prediksi Dampak Yang Ditimbulkan Dengan Algoritma J48 (Studi Kasus : Palang Merah Indonesia). KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 3(1), 25-29. doi:10.30865/komik.v3i1.1562
Maesaroh, S., & Kusrini, K. (2017). Sistem Prediksi Produktifitas Pertanian Padi Menggunakan Data Mining. Energy : Jurnal Ilmiah Ilmu-Ilmu Teknik, 7(2), 25-39.
Mendrofa, Y. (2019). Implementasi Algortima C4.5 Untuk Memprediksi Tingkat Kerusakan Akibat Banjir (Studi Kasus : BPBD Prov.Sumut). Jurnal Pelita Informatika, 7(4), 584-592.
Mujiasih, S. (2011). Pemanfatan Data Mining Untuk Prakiraan Cuaca. Jurnal Meteorologi Dan Geofisika, 12(2), 189-195. doi:10.31172/jmg.v12i2.100
Rosdiana, D., & Rismayana, A. H. (2018). Prediksi Waktu Tanam Cabai Menggunakan Algoritma C4.5. Prosiding SINTAK (pp. 436-442). Semarang: Universitas Stikubank.
Saifudin, A. (2018). Metode Datamining untuk Seleksi Calon Mahasiswa Baru. Jurnal Teknologi, 10(1), 25-36. doi:10.24853/jurtek.10.1.25-36
Siregar, A. M., Faisal, S., Cahyana, Y., & Priyatna, B. (2020). Perbandingan Algoritme Klasifikasi Untuk Prediksi Cuaca. Accounting Information System, 15-24.
T., P. B., & Sari, R. D. (2017). Penerapan Data Mining untuk Prakiraan Cuaca di Kota Malang Menggunakan Algoritma Iterative Dichotomiser Tree (ID3). JOUTICLA, 3(2), 101-108.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Arif Ega Prakosa, Ahmad Fawaid, Irkhas Nusantara, Faisal Amri, Aries Saifudin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms