Penerapan Teknik Stacking untuk Optimasi Deteksi Dini Anak Autis berbasis Support Vector Machine
DOI:
https://doi.org/10.32493/jtsi.v7i4.21570Kata Kunci:
Anak; Autis; Prediksi; StackingAbstrak
Autisme tidak sulit dideteksi, tetapi membutuhkan banyak pembelajaran dan pelatihan bagi dokter untuk mendeteksinya. Saat ini ASD dideteksi dengan memahami perilaku dan aktivitas intelektual seorang anak. Diagnosis ini bisa subjektif, memakan waktu, tidak meyakinkan, tidak memberikan wawasan yang tepat tentang genetika dan tidak cocok untuk deteksi dini. Metode Pembelajaran Mesin (Machine Learning) dapat membuat perubahan yang relevan untuk mempercepat proses. Diketahui bahwa intervensi dini merupakan kunci untuk memperbaiki anak autis. Jelas mempercepat waktu diagnosis bahkan lebih penting dalam kasus Autisme. Teknologi big data dan pembelajaran mesin dapat membuat kemajuan besar untuk memprediksi dan mempercepat proses diagnosis dan pengobatan yang kompleks dan memakan waktu. Sistem pembelajaran mesin dapat dikembangkan untuk memanfaatkan sejumlah besar data kesehatan dan medis yang tersedia untuk pemodelan prediktif dan analisis prediktif. Dalam makalah ini, perbandingan dari beberapa teknik dan model pembelajaran mesin akan diuji dan dianalisis. Pada penelitian ini diusulkan penerapan teknik stacking untuk prediksi adanya ASD. Hasil penelitian menunjukkan bahwa penerapan teknik stacking dapat meningkatkan kinerja model prediksi pada diagnosa ASD.
Referensi
Bone, D., Goodwin, M. S., & Lee, M. P. B. C. (2014). Applying Machine Learning to Facilitate Autism Diagnostics : Pitfalls and Promises. 101. https://doi.org/10.1007/s10803-014-2268-6
Constantino, J. N., Lavesser, P. D., Zhang, Y., Abbacchi, A. M., Gray, T., & Todd, R. D. (2007). Rapid Quantitative Assessment of Autistic Social Impairment by Classroom Teachers. Journal of the American Academy of Child and Adolescent Psychiatry, 46(12), 1668–1676. https://doi.org/10.1097/chi.0b013e318157cb23
Kosmicki, J. A., Sochat, V., Duda, M., & Wall, D. P. (2015). Searching for a Minimal Set of Behaviors for Autism Detection Through Feature Selection-based Machine Learning. Translational Psychiatry, 5(2), e514-7. https://doi.org/10.1038/tp.2015.7
Li, B., Sharma, A., Meng, J., Purushwalkam, S., & Gowen, E. (2017). Applying Machine Learning to Identify Autistic Adults Using Imitation: An Exploratory Study. PLoS ONE, 12(8), 1–19. https://doi.org/10.1371/journal.pone.0182652
Mythili, M. S., & Shanavas, A. R. M. (2014). A Study on Autism Spectrum Disorders using Classification Techniques. International Journal of Soft Computing and Engineering (IJSCE), 5, 2231–2307. http://www.ijsce.org/wp-content/uploads/papers/v4i5/E2433114514.pdf
R, V., & R, S. (2018). A Machine Learning based Approach to Classify Autism with Optimum Behavior Sets. International Journal of Engineering & Technology, 7(4), 4216–4219.
Thabtah, F. (2017). Autism Spectrum Disorder Screening: Machine Learning Adaptation and DSM-5 Fulfillment. ACM International Conference Proceeding Series, Part F1293, 1–6. https://doi.org/10.1145/3107514.3107515
Thabtah, F. (2019). Machine Learning in Autistic Spectrum Disorder Behavioral Research: A Review and Ways Forward. Informatics for Health and Social Care, 44(3), 278–297. https://doi.org/10.1080/17538157.2017.1399132
Thabtah, F., Kamalov, F., & Rajab, K. (2018). A New Computational Intelligence Approach to Detect Autistic Features for Autism Screening. International Journal of Medical Informatics, 117, 112–124. https://doi.org/10.1016/j.ijmedinf.2018.06.009
Wall, D. P., Dally, R., Luyster, R., Jung, J. Y., & DeLuca, T. F. (2012). Use of Artificial Intelligence to Shorten the Behavioral Diagnosis of Autism. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0043855
Wall, D. P., Kosmicki, J., Deluca, T. F., Harstad, E., & Fusaro, V. A. (2012). Use of Machine Learning to Shorten Observation-based Screening and Diagnosis of Autism. Translational Psychiatry, 2 (December 2011). https://doi.org/10.1038/tp.2012.10
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Yulianti Yulianti, Teti Desyani, Sri Mulyati
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms