Komparasi Metode Klasifikasi terhadap Data Penderita Penyakit Diabetes Menggunakan Python 3

Penulis

  • Ayu Okta Pratiwi Universitas Bina Darma
  • Tri Basuki Kurniawan Universitas Bina Darma
  • Edi Surya Negara Universitas Bina Darma
  • Yesi Novaria Kunang Universitas Bina Darma

Kata Kunci:

Classification, Comparison, Diabetes, Python 3, Naive Bayes, SVM (Support Vector Machine)

Abstrak

Diabetes is a serious challenge in the world of health, with broad impacts. In an effort to overcome this problem, it is important to analyze the classification of diabetes data to provide valuable insights. This study focuses on the comparison of the two main classification methods, namely Naive Bayes and Support Vector Machine (SVM), in analyzing diabetes data. We use the Python 3 programming language for implementation. The initial study involved the characterization of the dataset, including parameters such as blood pressure and blood glucose levels, which were important factors in the analysis. The preprocessing process is carried out to ensure data quality by overcoming missing or invalid values. After that, the dataset is divided into training and testing subsets. The Naive Bayes and SVM methods are implemented using the scikit-learn library in Python 3. Both models are trained using a training subset and tested on a test subset. The test results show that both methods have good performance in classifying diabetes data, but SVM stands out with higher accuracy. SVM has the ability to handle complex data and find optimal decision boundaries. The Naive Bayes model achieves the highest accuracy of 78.13% on 70% training data and 30% testing data, while the SVM model achieves 79.63% on 90% training data and 10% testing data. Overall, this study provides an in-depth understanding of the effectiveness of both methods in the context of classifying data on diabetics.

Biografi Penulis

Ayu Okta Pratiwi, Universitas Bina Darma

Magister Teknik Informatika, Universitas Bina Darma Palembang Sumatera Selatan

Referensi

Alita, D., Fernando, Y., & Sulistiani, H. (2020). Implementasi Algoritma Multiclass Svm Pada Opini Publik Berbahasa Indonesia Di Twitter. Jurnal Tekno Kompak, 14(2), 86. https://doi.org/10.33365/jtk.v14i2.792

Annisa, R. (2019). Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung. Jurnal Teknik Informatika Kaputama (JTIK), 3(1), 22–28. https://jurnal.kaputama.ac.id/index.php/JTIK/article/view/141/156

Annur, H. (2018). Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes. ILKOM Jurnal Ilmiah, 10(2), 160–165. https://doi.org/10.33096/ilkom.v10i2.303.160-165

Elfaladonna, F., & Rahmadani, A. (2019). Analisa Metode Classification-Decission Tree Dan Algoritma C.45 Untuk Memprediksi Penyakit Diabetes Dengan Menggunakan Aplikasi Rapid Miner. SINTECH (Science and Information Technology) Journal, 2(1), 10–17. https://doi.org/10.31598/sintechjournal.v2i1.293

Faid, M., Jasri, M., & Rahmawati, T. (2019). Perbandingan Kinerja Tool Data Mining Weka dan Rapidminer Dalam Algoritma Klasifikasi. Teknika, 8(1), 11–16. https://doi.org/10.34148/teknika.v8i1.95

Hana, F. M. (2020). Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 4(1), 32–39. https://doi.org/10.47970/siskom-kb.v4i1.173

Nurdiana, N., & Algifari, A. (2020). Studi Komparasi Algoritma Id3 Dan Algoritma Naive Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. Infotech Journal, 6(2), 18–23.

Putri, S., Irawan, E., & Rizky, F. (2021). Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5. Januari, 2(1), 39–46.

Qisthiano, M. R., Ruswita, I., & Armilia, P. (2023). Implementasi Metode SVM dalam Analisis Sentimen Mengenai Vaksin dengan Menggunakan Python 3. 13(1), 1–7.

Saleh, A. (2015). Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Journal of Informatics, Information System, Software Engineering and Applications (INISTA), 2(3). https://doi.org/10.20895/inista.v1i2.73

Trisno, I. B. (2016). Belajar Pemrograman Sulit ? Coba Python (Y. Hari (ed.)). Ubhara Manajemen Press.

Widodo, Y. B., Anggraeini, S. A., & Sutabri, T. (2021). Perancangan Sistem Pakar Diagnosis Penyakit Diabetes Berbasis Web Menggunakan Algoritma Naive Bayes. Jurnal Teknlogi Informatika Dan Komputer MH. Thamrin, 7(1), 112–123.

Unduhan

Diterbitkan

2023-10-30

Cara Mengutip

Pratiwi, A. O., Kurniawan, T. B., Negara, E. S., & Kunang, Y. N. (2023). Komparasi Metode Klasifikasi terhadap Data Penderita Penyakit Diabetes Menggunakan Python 3. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 6(4), 573–579. Diambil dari https://openjournal.unpam.ac.id/index.php/JTSI/article/view/31683