Prediksi Jumlah Kasus Penyakit di Jawa Timur Memanfaatkan Metode Simple Moving Average
DOI:
https://doi.org/10.32493/jtsi.v7i2.38653Kata Kunci:
prediksi; simple moving average; jumlah kasus penyakit; Dinas Kesehatan Provinsi Jawa TimurAbstrak
Berdasarkan tinjauan terhadap buku Profil Kesehatan Provinsi Jawa Timur tahun 2017 hingga 2021, kondisi kesehatan masyarakat selama beberapa tahun terakhir menunjukkan adanya perbedaan yang cukup besar dalam kasus penyakit di 38 kota atau kabupaten. Menentukan prioritas penanggulangan penyakit berdasarkan profil kesehatan, serta memprediksi tren kasus penyakit di masa depan, merupakan tugas yang sulit. Oleh karena itu, diperlukan strategi prediksi yang menggunakan data historis untuk memperkirakan pola kasus penyakit di setiap wilayah dari tahun ke tahun, serta sistem berbasis web untuk mengimplementasikan prediksi tersebut. Langkah-langkah yang dilakukan meliputi studi literatur, pembuatan model prediksi dengan menggunakan pendekatan Simple Moving Average, dan implementasi sistem dengan basis data MySQL, backend PHP, dan frontend Angular. Hasil penelitian menunjukkan keberhasilan aplikasi prediksi tren kasus penyakit menggunakan data historis selama lima periode. Pengujian fungsionalitas dan kompatibilitas browser menunjukkan bahwa sistem berjalan sesuai dengan yang diharapkan pada berbagai lingkungan, sedangkan pengujian usabilitas menggunakan teknik WebQual 4.0 menghasilkan nilai rata-rata 4,34 (sangat baik), yang mengindikasikan bahwa sistem berhasil memenuhi kebutuhan pengguna.
Referensi
Aji, B. G., Sondawa, D. C. A., Anindika, F. A., & Januarita, D. (2022). Analisis Peramalan Obat Menggunakan Metode Simple Moving Average, Weighted Moving Average, Dan Exponential Smoothing. JURIKOM (Jurnal Riset Komputer), 9(4), 959–965. https://doi.org/10.30865/jurikom.v9i4.4454
Choi, S. B., & Ahn, I. (2020). Forecasting imported COVID-19 cases in South Korea using mobile roaming data. PLOS ONE, 15(11), 1–10. https://doi.org/10.1371/journal.pone.0241466
Choudhary, A., Kumar, P., Sahu, S. K., Pradhan, C., Singh, S. K., Gašparovic, M., Shukla, A., & Singh, A. K. (2022). Time Series Simulation and Forecasting of Air Quality Using In-situ and Satellite-Based Observations Over an Urban Region. Nature Environment and Pollution Technology, 21(3), 1137–1148. https://doi.org/10.46488/NEPT.2022.v21i03.018
Dinas Kesehatan Provinsi Jawa Timur. (2018). Profil Kesehatan Provinsi Jawa Timur Tahun 2017.
Dinas Kesehatan Provinsi Jawa Timur. (2019). Profil Kesehatan Provinsi Jawa Timur Tahun 2018.
Dinas Kesehatan Provinsi Jawa Timur. (2020). Profil Kesehatan Provinsi Jawa Timur Tahun 2019.
Dinas Kesehatan Provinsi Jawa Timur. (2021). Profil Kesehatan Provinsi Jawa Timur Tahun 2020.
Dinas Kesehatan Provinsi Jawa Timur. (2022). Profil Kesehatan Provinsi Jawa Timur Tahun 2021.
Fiarni, C., Kurniawa, H., & Mulyono, F. H. (2021). Perancangan Integrated Demand Forecast untuk Manajemen Informasi Sistem Pelayanan Kegawatdaruratan. Telematika, 16(1), 10–17.
Sari, N. L., & Hasanuddin, T. (2020). Analisis Performa Metode Moving Average Model untuk Prediksi Jumlah Penderita Covid-19. Indonesian Journal of Data and Science (IJODAS), 1(3), 87–95. https://kawalcovid19.id/
Lubis, I. S. Br., & Azhar, A. H. (2023). Perancangan Aplikasi Peramalan Penjualan Obat Menggunakan Metode Single Moving Average. Jurnal ITCC (Information Technology and Cyber Crime), 1(2), 10–20.
Mahmoudian, Y., Nemati, A., & Safaei, A. S. (2023). A forecasting approach for hospital bed capacity planning using machine learning and deep learning with application to public hospitals. Healthcare Analytics, 4, 100245. https://doi.org/10.1016/j.health.2023.100245
Nwosu, U. I., & Obite, C. P. (2021). Modeling Ivory Coast COVID-19 cases: Identification of a high-performance model for utilization. Results in Physics, 20, 103763. https://doi.org/10.1016/j.rinp.2020.103763
Oshinubi, K., Al-Awadhi, F., Rachdi, M., & Demongeot, J. (2021). Data Analysis and Forecasting of COVID-19 Pandemic in Kuwait Based on Daily Observation and Basic Reproduction Number Dynamics. Kuwait Journal of Science, 1–30. https://doi.org/10.48129/kjs.splcov.14501
Rahman, M. M., Uddin, M. G., Islam, M. R., Kibria, M. K., & Mollah, M. N. H. (2023). Day Level Forecasting for COVID-19 Pandemic Spread in SAARC Countries. International Journal of Statistical Sciences, 23(2), 129–142. https://doi.org/10.3329/ijss.v23i2.70135
Rostami-Tabar, B., & Rendon-Sanchez, J. F. (2021). Forecasting COVID-19 daily cases using phone call data. Applied Soft Computing, 100, 106932. https://doi.org/10.1016/j.asoc.2020.106932
Salsabila, Y. L., & Ratnasari, V. (2022). Pengelompokan Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Kesehatan Masyarakat dengan Pendekatan Metode Ensemble ROCK. Jurnal Sains Dan Seni ITS, 11(2), D220–D227. https://doi.org/10.12962/j23373520.v11i2.73441
Shodiq, M., Priyono, A., & Ramanda, F. (2023). Prediksi Jumlah Penyakit Infeksi Saluran Pernapasan Akut (ISPA) Menggunakan Simple Moving Average. Jurnal Informatika Medis, 1(2), 48–52.
Siregar, M. T., Made, G., Sasmita, A., Agung, G., & Putri, A. (2022). Perbandingan Analisis Metode Peramalan Jumlah Kasus Penyakit Menular di Kota Bandung (Studi Kasus: Dinas Kesehatan Kota Bandung). JITTER-Jurnal Ilmiah Teknologi Dan Komputer, 3(1), 831–842.
Widjiyati, N. (2022). Analisa Prediksi Algoritma Simple Moving Average Dengan Pendekatan Multi Periode. Smart Comp: Jurnalnya Orang Pintar Komputer, 11(1), 96–99. https://doi.org/10.30591/smartcomp.v11i1.3206
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Shynta Ayu Dwi Darmawan, Karmilasari Karmilasari
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms