Penerapan Principal Component Analysis pada Model Deteksi Dini Anak Autisme
DOI:
https://doi.org/10.32493/jtsi.v7i2.38935Kata Kunci:
Anak, Autis, Deteksi, Principal Component AnalysisAbstrak
ASD (Autism Spectrum Disorder) adalah gangguan saraf yang menyebabkan gangguan seumur hidup pada anak yang mengakibatkan penyakit jiwa. Perawatan dapat membantu tetapi tidak dapat disembuhkan. Saat ini ASD dideteksi dengan memahami perilaku dan aktivitas intelektual seorang anak. Diagnosis ini bisa subjektif, memakan waktu, tidak meyakinkan, tidak memberikan wawasan yang tepat tentang genetika dan tidak cocok untuk deteksi dini. Dalam Autisme, tantangan besar yang dihadapi dalam banyak kondisi perawatan kesehatan adalah waktu diagnosis. Diperlukan waktu hingga 6 bulan untuk mendiagnosis anak autis dengan pasti karena proses yang lama, dan seorang anak harus menemui banyak spesialis berbeda untuk mendiagnosis autisme, mulai dari dokter anak perkembangan, ahli saraf, psikiater atau psikolog. Metode Pembelajaran Mesin dapat membuat perubahan yang relevan untuk mempercepat proses. Pada penelitian ini diusulkan penerapan PCA (Principal Component Analysis). PCA pada dasarnya adalah dasar untuk analisis data multivariat yang menerapkan metode proyeksi. Teknik analisis ini biasanya digunakan untuk merangkum tabel data multivariat yang besar sehingga dapat digunakan sebagai kumpulan variabel yang lebih kecil atau sebagai indeks ringkasan. Dari sana, variabel dianalisis untuk menemukan tren spesifik, cluster variabel, dan outlier. Pada penelitian ini diusulkan untuk mengimplementasikan algoritma PCA (Principal Component Analysis), yaitu PCA (Principal Component Analysis), Kernel PCA, Sparse PCA, dan Incremental PCA. Pada penelitian ini menggunakan metode eksperimen dengan membuat aplikasi untuk menerapkan algoritma yang diusulkan. Kemudian menguji model menggunakan dataset sekunder dan mengukur kinerja model. Hasil penelitian menunjukkan bahwa model yang menerapkan Sparse PCA memberikan hasil terbaik yang berarti bahwa penerapan PCA dapat digunakan untuk mereduksi jumlah fitur dan meningkatkan kinerja model.
Referensi
Bone, D., Goodwin, M. S., & Lee, M. P. B. C. (2014). Applying Machine Learning to Facilitate Autism Diagnostics : Pitfalls and Promises. 101. https://doi.org/10.1007/s10803-014-2268-6
Constantino, J. N., Lavesser, P. D., Zhang, Y., Abbacchi, A. M., Gray, T., & Todd, R. D. (2007). Rapid Quantitative Assessment of Autistic Social Impairment by Classroom Teachers. Journal of the American Academy of Child and Adolescent Psychiatry, 46(12), 1668–1676. https://doi.org/10.1097/chi.0b013e318157cb23
Dawson, C. W. (2009). Projects in Computing and Information Systems. In Information Systems Journal (Vol. 2). http://www.sentimentaltoday.net/National_Academy_Press/0321263553.Addison.Wesley.Publishing.Company.Projects.in.Computing.and.Information.Systems.A.Students.Guide.Jun.2005.pdf
Koehler, J. C., Dong, M. Sen, Bierlich, A. M., Fischer, S., Späth, J., Plank, I. S., Koutsouleris, N., & Falter-Wagner, C. M. (2024). Machine learning classification of autism spectrum disorder based on reciprocity in naturalistic social interactions. Translational Psychiatry, 14(1), 76. https://doi.org/10.1038/s41398-024-02802-5
Kosmicki, J. A., Sochat, V., Duda, M., & Wall, D. P. (2015). Searching for a Minimal Set of Behaviors for Autism Detection Through Feature Selection-based Machine Learning. Translational Psychiatry, 5(2), e514-7. https://doi.org/10.1038/tp.2015.7
Li, B., Sharma, A., Meng, J., Purushwalkam, S., & Gowen, E. (2017). Applying Machine Learning to Identify Autistic Adults Using Imitation: An Exploratory Study. PLoS ONE, 12(8), 1–19. https://doi.org/10.1371/journal.pone.0182652
Mythili, M. S., & Shanavas, A. R. M. (2014). A Study on Autism Spectrum Disorders using Classification Techniques. International Journal of Soft Computing and Engineering (IJSCE), 5, 2231–2307. http://www.ijsce.org/wp-content/uploads/papers/v4i5/E2433114514.pdf
Qureshi, M. S., Qureshi, M. B., Asghar, J., Alam, F., & Aljarbouh, A. (2023). Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques. Journal of Healthcare Engineering, 2023, 1–10. https://doi.org/10.1155/2023/9815989
R, V., & R, S. (2018). A Machine Learning based Approach to Classify Autism with Optimum Behavior Sets. International Journal of Engineering & Technology, 7(4), 4216–4219.
Thabtah, F. (2017). Autism Spectrum Disorder Screening: Machine Learning Adaptation and DSM-5 Fulfillment. ACM International Conference Proceeding Series, Part F1293, 1–6. https://doi.org/10.1145/3107514.3107515
Thabtah, F. (2019). Machine Learning in Autistic Spectrum Disorder Behavioral Research: A Review and Ways Forward. Informatics for Health and Social Care, 44(3), 278–297. https://doi.org/10.1080/17538157.2017.1399132
Thabtah, F., Kamalov, F., & Rajab, K. (2018). A New Computational Intelligence Approach to Detect Autistic Features for Autism Screening. International Journal of Medical Informatics, 117, 112–124. https://doi.org/10.1016/j.ijmedinf.2018.06.009
Wall, D. P., Dally, R., Luyster, R., Jung, J. Y., & DeLuca, T. F. (2012). Use of Artificial Intelligence to Shorten the Behavioral Diagnosis of Autism. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0043855
Wall, D. P., Kosmicki, J., Deluca, T. F., Harstad, E., & Fusaro, V. A. (2012). Use of Machine Learning to Shorten Observation-based Screening and Diagnosis of Autism. Translational Psychiatry, 2(December 2011). https://doi.org/10.1038/tp.2012.10
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Aries Saifudin, Endar Nirmala, Irpan Kusyadi
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms