Penerapan Seleksi Fitur pada Deteksi Coronavirus Disease 19 (COVID-19) berbasis Random Forest

Penulis

DOI:

https://doi.org/10.32493/jtsi.v7i4.40755

Kata Kunci:

Seleksi Fitur; Prediksi; COVID-19

Abstrak

Data Mining menggunakan algoritma pembelajaran mesin (machine learning) dapat digunakan untuk membantu menganalisis data historis untuk memprediksi COVID-19. Dataset yang digunakan untuk memprediksi COVID-19 memiliki banyak fitur, namun fitur tersebut memiliki kemungkinan redundansi atau tidak relevan yang dapat menyebabkan penurunan kinerja pengklasifikasi. Penelitian ini mengusulkan model yang menerapkan pemilihan fitur (feature selection) untuk memilih fitur yang relevan dan dapat memberikan prediksi kinerja yang lebih baik untuk diagnosa/prediksi COVID-19. Beberapa teknik pemilihan fitur yang diusulkan adalah Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Forward Floating Selection ( SFFS), Sequential Forward Floating Selection (SBFS), Sequential Backward Floating Selection (SBFS), dan selectKBest. Algoritma klasifikasi yang digunakan untuk mengklasifikasikan adalah Random Forest. Model yang memberikan nilai kinerja terbaik adalah model yang menerapkan SFS dan SFFS sebagai seleksi fitur.

Biografi Penulis

Aries Saifudin, Universitas Pamulang

Received A.Md. (Associate Degree) in Electronic Engineering from Polytechnic of Brawijaya University, Malang, S.T. (Bachelor Degree) in Informatics Engineering from Mercu Buana University, Jakarta, and M.Kom (Master Degree) in Software Engineering from STMIK ERESHA, Jakarta. He is a lecturer at Informatics Engineering, Pamulang University. His current research interests include software engineering, intelligent systems, and machine learning.

Publication:

SCOPUS ID: 57212083789

Researcher ID: AAJ-9700-2021

SINTA ID: 256981

Google Scholar ID: rN9QTUgAAAAJ

ORCID ID: 0000-0002-3882-633X

Garuda ID: 459608

 

Referensi

Burhan, E., Susanto, A. D., Nasution, S. A., Ginanjar, E., Pitoyo, W., Susilo, A., & Dkk. (2020). Pedoman Tatalaksana COVID-19. In Pedoman Tatalaksana COVID-19 (3rd ed.).

Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Napoli, R. Di. (2022). Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–., December 2020, 1–49.

Cennimo, D. J. (2024). Coronavirus Disease 2019 (COVID-19) (pp. 1–4). Medscape.

Gorunescu, F. (2011). Data mining: concepts and techniques. In Chemistry & https://doi.org/10.1007/978-3-642-19721-5

Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The Origin, Transmission and Clinical Therapies on Coronavirus Disease 2019 (COVID-19) Outbreak – An Update on the Status. Military Medical Research, 7(11), 1–10. https://doi.org/10.1186/s40779-020-00240-0

Jiawei, H., Kamber, M., Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. In San Francisco, CA, itd: Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-381479-1.00001-0

Liu, H., Jiang, H., & Zheng, R. (2016). The Hybrid Feature Selection Algorithm Based on Maximum Minimum Backward Selection Search Strategy for Liver Tissue Pathological Image Classification. Computational and Mathematical Methods in Medicine, 2016. https://doi.org/10.1155/2016/7369137

Mendez, C. M. (2020). Solidarity” Clinical Trial for COVID -19 Treatments. Brazilian Journal of Impleantology and Health Sciences, 1–6.

Nair, R., & Bhagat, A. (2019). Feature selection method to improve the accuracy of classification algorithm. International Journal of Innovative Technology and Exploring Engineering, 8(6), 124–127.

Oxford University. (2022). The RECOVERY Trial - two years on (pp. 1–2). Oxford University.

Sahin, A. R., Erdogan, A., Mutlu Agaoglu, P., Dineri, Y., Cakirci, A. Y., Senel, M. E., Okyay, R. A., & Tasdogan, A. M. (2020). 2019 Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature. Eurasian Journal of Medicine and Oncology, 4(1), 1–7. https://doi.org/10.14744/ejmo.2020.12220

Sindi, S., Ningse, W. R. O., Sihombing, I. A., Ilmi R.H.Zer, F., & Hartama, D. (2020). Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia. Jti, 4(1), 166–173.

World Health Organization. (2020). Laboratory Testing for 2019 Novel Coronavirus (2019-nCoV) in Suspected Human Cases. In WHO - Interim guidance (pp. 1–7). World Health Organization. https://www.who.int/publications/i/item/WHO-2019-nCoV-lab-testing-2021.1-eng

Xue, B., Zhang, M., Browne, W. N., & Yao, X. (2016). A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Transactions on Evolutionary Computation, 20(4), 606–626. https://doi.org/10.1109/TEVC.2015.2504420

Yanti, E., Fridalni, N., & Harmawati. (2020). Mencegah Penularan Virus Corona. Journal Abdimas Saintika, 2, 7. https://jurnal.syedzasaintika.ac.id/index.php/abdimas/article/view/553/pdf

Unduhan

Diterbitkan

2024-10-31

Cara Mengutip

Saifudin, A., Nirmala, E., & Kusyadi, I. (2024). Penerapan Seleksi Fitur pada Deteksi Coronavirus Disease 19 (COVID-19) berbasis Random Forest. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 7(4), 1548–1556. https://doi.org/10.32493/jtsi.v7i4.40755