Model Optimasi SVM-GSBE dalam Menangani High Dimensional Data Stunting Kota Samarinda

Penulis

  • Siti Muawwanah Universitas Muhammadiyah Kalimantan Timur
  • Taghfirul Azhima Yoga Siswa Universitas Muhammadiyah Kalimantan Timur
  • Wawan Joko Pranoto Universitas Muhammadiyah Kalimantan Timur

DOI:

https://doi.org/10.32493/jtsi.v7i3.41545

Kata Kunci:

Stunting; SVM; Grid Search; Backward Elimination; Data Berdimensi Tinggi

Abstrak

Stunting telah menjadi topik kesehatan yang mendapat perhatian luas di Indonesia, terutama di Kota Samarinda yang mencatat prevalensi sebesar 12,7% pada tahun 2023, hal ini menyebabkan kasus stunting di Kota tersebut menjadi yang tertinggi di provinsi Kalimantan Timur. Penggunaan teknik data mining menjadi krusial dalam mengatasi tantangan data berdimensi tinggi seperti kompleksitas perhitungan, resiko overfitting, dan kesulitan visualisasi. Penelitian ini bertujuan untuk meningkatkan akurasi model optimasi Support Vector Machine menggunakan Grid Search dan seleksi fitur Backward Elimination (SVM-GSBE) guna menangani data berdimensi tinggi terkait penyakit stunting di Kota Samarinda. Dataset yang digunakan berasal dari Dinas kesehatan Kota Samarinda Tahun 2023, yang meliputi 26 Puskesmas dengan 21 atribut dan total 150.466 record. Metode penelitian mencakup pengumpulan data, pre-processing, pembagian data dengan K-Fold Cross Validation, seleksi fitur menggunakan Backward Elimination, dan optimasi model SVM dengan Grid Search. Fitur-fitur seperti BB/U, ZS TB/U, ZS BB/U, ZS BB/TB, Tinggi, dan LiLA terbukti mampu memberikan kenaikan akurasi pada klasifikasi data stunting. Hasil evaluasi menunjukkan bahwa Grid Search berhasil meningkatkan akurasi Linear dari 99.59% menjadi 99.78%, Polynomial 90.92% menjadi 99.40%, RBF 89.80% menjadi 98.36%, dan Sigmoid 75.29% menjadi 86.84%. Ini menyatakan bahwa model SVM-GSBE dapat digunakan sebagai alat yang efektif untuk deteksi dini stunting dan dapat mendukung kebijakan kesehatan di Kota Samarinda.

Referensi

Ali, I., Kurnia, D. A., Pratama, M. A., & Al Ma’ruf, F. (2021). Klasifikasi Status Stunting Balita Di Desa Slangit Menggunakan Metode K-Nearest Neighbor. KOPERTIP: Scientific Journal of Informatics Management and Computer, 5(3), 35–39.

Amirudin, M., & Wowor, A. D. (2023). Analisis Perbandingan Klasifikasi Balita Beresiko Stunting Menggunakan Metode Support Vector Machine dan Decission Tree. Proceedings of the National Conference on Electrical Engineering, Informatics, Industrial Technology, and Creative Media, 3(1), 581–591.

Andriyani, S. Y., Lydia, M. S., & Efendi, S. (2023). Optimization of Support Vector Machine Algorithm Using Stunting Data Classification. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 11(1), 164. https://doi.org/10.33394/j-ps.v11i1.6619

Arisandi, R. R. R., Warsito, B., & Hakim, A. R. (2022). Aplikasi naïve bayes classifier (nbc) pada klasifikasi status gizi balita stunting dengan pengujian k-fold cross validation. Jurnal Gaussian, 11(1), 130–139.

Asad, M., & Zouq, A. (2024). A Machine Learning Approach for Predicting Stunting in Under Five Children: The Case of Pakistan Demographic and Health Survey. https://doi.org/10.21203/rs.3.rs-2907309/v1

Athoillah, M., & Putri, R. K. (2019). Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 99–106. https://doi.org/10.22219/kinetik.v4i2.724

Awalullaili, F. O., Ispriyanti, D., & Widiharih, T. (2023). Klasifikasi Penyakit Hipertensi Menggunakan Metode Svm Grid Search Dan Svm Genetic Algorithm (GA). Jurnal Gaussian, 11(4), 488–498. https://doi.org/10.14710/j.gauss.11.4.488-498

Bappeda Kaltim 2023. (n.d.). Rembug Stunting Tingkat Kota Samarinda. Retrieved April 20, 2024, from https://bappeda.kaltimprov.go.id/postingan/rembug-stunting-tingkat-kota-samarinda#

C. M. Annur. (2023). Calon Ibu Kota Baru, Bagaimana Angka Balita Stunting di Wilayah di Kalimantan Timur? https://databoks.katadata.co.id/datapublish/2023/02/27/calon-ibu-kotabaru-bagaimana-angka-balita-stunting-di-wilayah-di-kalimantan-timur

Dwi Astuti, D., Benya Adriani, R., Widyastuti Handayani, T., Keperawatan, J., & Kemenkes Surakarta, P. (2020). Pemberdayaan Masyarakat Dalam Rangka Stop Generasi Stunting. 4(2), 156–162. https://doi.org/10.31764/jmm.v4i2.1910

Gebeye, L. G., Dessie, E. Y., & Yimam, J. A. (2024). Predictors of micronutrient deficiency among children aged 6–23 months in Ethiopia: a machine learning approach. Frontiers in Nutrition, 10, 1277048.

Hakimah, M., Prabiantissa, C. N., Rozi, N. F., Yamani, L. N., & Puspitasari, I. (2022). Determination of Relevant Feature Combinations For Detection Stunting Status of Toddlers. 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 324–329.

Kusumaningrum, R., Indihatmoko, T. A., Juwita, S. R., Hanifah, A. F., Khadijah, K., & Surarso, B. (2020). Benchmarking of multi-class algorithms for classifying documents related to stunting. Applied Sciences (Switzerland), 10(23), 1–13. https://doi.org/10.3390/app10238621

Maulidina, F., Rustam, Z., Hartini, S., Wibowo, V. V. P., Wirasati, I., & Sadewo, W. (2021). Feature optimization using Backward Elimination and Support Vector Machines (SVM) algorithm for diabetes classification. Journal of Physics: Conference Series, 1821(1). https://doi.org/10.1088/1742-6596/1821/1/012006

Meisya, T., Aulia, P., Arifin, N., & Mayasari, R. (n.d.). Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi COVID-19. https://doi.org/10.31598

Muliawati, A., & Nurramdhani Irmanda, H. (2022). Penerapan Borderline-SMOTE dan Grid Search pada Bagging-SVM untuk Klasifikasi Penyakit Diabetes.

Ndagijimana, S., Kabano, I. H., Masabo, E., & Ntaganda, J. M. (2023). Prediction of stunting among under-5 children in Rwanda using machine learning techniques. Journal of Preventive Medicine and Public Health, 56(1), 41.

Nirvan Adam Pramudhyta, & Muhammad Syaifur Rohman. (2023). Perbandingan Optimasi Metode Grid Search dan Random Search dalam Algoritma XGBoost untuk Klasifikasi Stunting. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8, 19–29. http://dx.doi.org/10.30865/mib.v8i1.6965

Nugroho, H., Yuliastuti, G. E., & Firman, A. (n.d.). Klasifikasi Diagnosis Diabetes Melitus Menggunakan Metode Naïve Bayes Dengan Seleksi Fitur Backward Elimination Diabetes Melitus Diagnosis Classification Using The Naive Bayes Method With Feature Selection Backward Elimination. In Jurnal Ilmiah NERO (Vol. 8, Issue 2).

Rahman, S. M. J., Ahmed, N. A. M. F., Abedin, M. M., Ahammed, B., Ali, M., Rahman, M. J., & Maniruzzaman, M. (2021). Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach. PLoS ONE, 16(6 June 2021). https://doi.org/10.1371/journal.pone.0253172

Rahmi, I., Susanti, M., Yozza, H., & Wulandari, F. (2022). Classification Of Stunting In Children Under Five Years In Padang City Using Support Vector Machine. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 16(3), 771–778. https://doi.org/10.30598/barekengvol16iss3pp771-778

Reza, A. A. R., & Rohman, M. S. (2024). Prediction Stunting Analysis Using Random Forest Algorithm and Random Search Optimization. Journal Of Informatics And Telecommunication Engineering, 7(2), 534–544.

Sahamony, N. F., Terttiaavini, T., & Rianto, H. (2024). Analisis Perbandingan Kinerja Model Machine Learning untuk Memprediksi Risiko Stunting pada Pertumbuhan Anak. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 413–422. https://doi.org/10.57152/malcom.v4i2.1210

Syahrial, Rosmin Ilham, Zulaika F Asikin, & St. Surya Indah Nurdin. (2022). Stunting Classification in Children’s Measurement Data Using Machine Learning Models. JOURNAL LA MULTIAPP, 3(Vol. 3 No. 2 (2022): Journal La Multiapp), 1–9. https://doi.org/10.37899/journallamultiapp.v3i2.614

Taghfirul Azhima Yoga Siswa, S. K. M. K. (2023). Data Mining - Mengupas Tuntas Analisis Data Dengan Metode Klasifikasi Hingga Deployment Aplikasi Menggunakan Python. In Data Mining: Mengupas Tuntas Analisis Data Dengan Metode Klasifikasi Hingga Deployment Aplikasi Menggunakan Python (pp. 1–258). UMKT PRESS Universitas Muhammadiyah Kalimantan Timur Jl. Ir. H. Juanda No 15 Samarinda, Kalimantan Timur Fax. 0541-766832 Email: ppi@umkt.ac.id.

Titimeidara, M. Y., & Hadikurniawati, W. (n.d.). Monica Yoshe Titimeidara Implementasi Metode Naive Bayes Implementasi Metode Naive Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita. In Tri Lomba Juang (Vol. 50241, Issue 1).

Wali, N., Agho, K., & Renzaho, A. M. N. (2019). Past drivers of and priorities for child undernutrition in South Asia: a mixed methods systematic review protocol. Systematic Reviews, 8(1), 189. https://doi.org/10.1186/s13643-019-1112-7

Wiraguna, I. K. A., Setyati, E., & Pramana, E. (2022). Prediksi Anak Stunting Berdasarkan Kondisi Orang Tua Dengan Metode Support Vector Machine Dengan Study Kasus Di Kabupaten Tabanan-Bali. SMATIKA JURNAL, 12(01), 47–54. https://doi.org/10.32664/smatika.v12i01.662

Yunus Muhajir, Biddinika Kunta Muhammad, & Fadlil Abdul. (2023). Optimasi Algoritma Naïve Bayes Menggunakan Fitur Seleksi Backward Elimination Untuk Klasifikasi Prevalensi Stunting. Decode: Jurnal Pendidikan Teknologi Informasi, 3, 1–8. https://doi.org/10.51454/decode.v3i2.188

Unduhan

Diterbitkan

2024-07-31

Cara Mengutip

Siti Muawwanah, Taghfirul Azhima Yoga Siswa, & Wawan Joko Pranoto. (2024). Model Optimasi SVM-GSBE dalam Menangani High Dimensional Data Stunting Kota Samarinda. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 7(3), 1246–1258. https://doi.org/10.32493/jtsi.v7i3.41545