Pengembangan Model Support Vector Machine untuk Meningkatkan Akurasi Klasifikasi Diagnosis Penyakit Jantung

Penulis

  • Gantar Fitra Fahrudin Politeknik Negeri Sriwijaya
  • Suroso Suroso Politeknik Negeri Sriwijaya
  • Sopian Soim Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.32493/jtsi.v7i3.42254

Kata Kunci:

Support Vector Machine; Supervised Learning; Klasifikasi; Penyakit Jantung

Abstrak

Penyakit jantung merupakan salah satu masalah kesehatan serius yang menyebabkan risiko kematian tinggi di seluruh dunia. Faktor-faktor pemicunya meliputi kolesterol tinggi, diabetes, dan tekanan darah tinggi. Oleh karena itu, prediksi dini penyakit jantung adalah langkah awal yang sangat penting untuk mengurangi risiko kematian. Makalah ini mengusulkan model klasifikasi penyakit jantung baru yang berbasis algoritma Support Vector Machine (SVM) untuk meningkatkan performa deteksi penyakit. Untuk meningkatkan akurasi diagnosis, kami menerapkan teknik pemilihan fitur dan grid search. Kinerja model yang ditingkatkan divalidasi dengan membandingkannya dengan model sederhana menggunakan confusion matrix. Model yang ditingkatkan mencapai akurasi 96,56%, menunjukkan peningkatan akurasi sebesar 8,91% dibandingkan model sebelumnya yang hanya mencapai tingkat akurasi sebesar 87,65%. Selain itu, jumlah fitur yang digunakan dikurangi dari 14 menjadi 8, sehingga mengurangi beban komputasi dari 100% menjadi sekitar 32%. Hasil ini menunjukkan bahwa SVM yang ditingkatkan menawarkan kinerja yang lebih baik dan lebih efisien dibandingkan metode lain dalam klasifikasi penyakit jantung.

Referensi

Ali, Liaqat, Atiqur Rahman, Aurangzeb Khan, Mingyi Zhou, Ashir Javeed, and Javed Ali Khan. 2019. “An Automated Diagnostic System for Heart Disease Prediction Based on ${chi^{2}}$ Statistical Model and Optimally Configured Deep Neural Network.” IEEE Access 7:34938–45. doi: 10.1109/ACCESS.2019.2904800.

Ali, Syed Arslan, Basit Raza, Ahmad Kamran Malik, Ahmad Raza Shahid, Muhammad Faheem, Hani Alquhayz, and Yogan Jaya Kumar. 2020. “An Optimally Configured and Improved Deep Belief Network (OCI-DBN) Approach for Heart Disease Prediction Based on Ruzzo–Tompa and Stacked Genetic Algorithm.” IEEE Access 8:65947–58. doi: 10.1109/ACCESS.2020.2985646.

Aliyar Vellameeran, Fathima, and Thomas Brindha. 2022. “A New Variant of Deep Belief Network Assisted with Optimal Feature Selection for Heart Disease Diagnosis Using IoT Wearable Medical Devices.” Computer Methods in Biomechanics and Biomedical Engineering 25(4):387–411. doi: 10.1080/10255842.2021.1955360.

Bharti, Rohit, Aditya Khamparia, Mohammad Shabaz, Gaurav Dhiman, Sagar Pande, and Parneet Singh. 2021. “Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning.” Computational Intelligence and Neuroscience 2021:1–11. doi: 10.1155/2021/8387680.

Das, Sujay, Ritesh Sharma, Mahendra Kumar Gourisaria, Siddharth Swarup Rautaray, and Manjusha Pandey. 2020. “Heart Disease Detection Using Core Machine Learning and Deep Learning Techniques: A Comparative Study.” International Journal on Emerging Technologies 11(3):531–38.

Derisma, D. 2020. “Perbandingan Kinerja Algoritma Untuk Prediksi Penyakit Jantung Dengan Teknik Data Mining.” Journal of Applied Informatics and Computing 4(1):84–88. doi: 10.30871/jaic.v4i1.2152.

Dinar, Ahmed M., Mohd Zain, and F. Salehuddin. 2018. Utilizing Of Cmos Isfet Sensors In DNA Applications Detection: A Systematic Review. Vol. 10.

Diwakar, Manoj, Amrendra Tripathi, Kapil Joshi, Minakshi Memoria, Prabhishek Singh, and Neeraj kumar. 2021. “Latest Trends on Heart Disease Prediction Using Machine Learning and Image Fusion.” Materials Today: Proceedings 37:3213–18. doi: 10.1016/j.matpr.2020.09.078.

Elhoseny, Mohamed, Mazin Abed Mohammed, Salama A. Mostafa, Karrar Hameed Abdulkareem, Mashael S. Maashi, Begonya Garcia-Zapirain, Ammar Awad Mutlag, and Marwah Suliman Maashi. 2021. “A New Multi-Agent Feature Wrapper Machine Learning Approach for Heart Disease Diagnosis.” Computers, Materials & Continua 67(1):51–71. doi: 10.32604/cmc.2021.012632.

Haq, Amin Ul, Jian Ping Li, Muhammad Hammad Memon, Shah Nazir, and Ruinan Sun. 2018. “A Hybrid Intelligent System Framework for the Prediction of Heart Disease Using Machine Learning Algorithms.” Mobile Information Systems 2018:1–21. doi: 10.1155/2018/3860146.

Hasan, Tabreer T., Manal H. Jasim, and Ivan A. Hashim. 2018. “FPGA Design and Hardware Implementation of Heart Disease Diagnosis System Based on NVG-RAM Classifier.” Pp. 33–38 in 2018 Third Scientific Conference of Electrical Engineering (SCEE). IEEE.

Janosi, Andras, Steinbrunn, William, Pfisterer, Matthias, and Robert Detrano. 1988. Heart Disease.

Javid, Irfan, Ahmed Khalaf, and Rozaida Ghazali. 2020. “Enhanced Accuracy of Heart Disease Prediction Using Machine Learning and Recurrent Neural Networks Ensemble Majority Voting Method.” International Journal of Advanced Computer Science and Applications 11(3). doi: 10.14569/IJACSA.2020.0110369.

Kannan, R., and V. Vasanthi. 2019. “Machine Learning Algorithms with ROC Curve for Predicting and Diagnosing the Heart Disease.” Pp. 63–72 in.

Katarya, Rahul, and Sunit Kumar Meena. 2021. “Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis.” Health and Technology 11(1):87–97. doi: 10.1007/s12553-020-00505-7.

Mastoi, Qurat-ul-ain, Teh Ying Wah, Mazin Abed Mohammed, Uzair Iqbal, Seifedine Kadry, Arnab Majumdar, and Orawit Thinnukool. 2022. “Novel DERMA Fusion Technique for ECG Heartbeat Classification.” Life 12(6):842. doi: 10.3390/life12060842.

Mohammed, Mazin Abed, Karrar Hameed Abdulkareem, Alaa S. Al-Waisy, Salama A. Mostafa, Shumoos Al-Fahdawi, Ahmed Musa Dinar, Wajdi Alhakami, Abdullah Baz, Mohammed Nasser Al-Mhiqani, Hosam Alhakami, Nureize Arbaiy, Mashael S. Maashi, Ammar Awad Mutlag, Begona Garcia-Zapirain, and Isabel De La Torre Diez. 2020. “Benchmarking Methodology for Selection of Optimal COVID-19 Diagnostic Model Based on Entropy and TOPSIS Methods.” IEEE Access 8:99115–31. doi: 10.1109/ACCESS.2020.2995597.

Mohan, Senthilkumar, Chandrasegar Thirumalai, and Gautam Srivastava. 2019. “Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques.” IEEE Access 7:81542–54. doi: 10.1109/ACCESS.2019.2923707.

Muhsen, Dena Kadhim, Teaba Wala Aldeen Khairi, and Noor Imad Abd Alhamza. 2021. “Machine Learning System Using Modified Random Forest Algorithm.” Pp. 508–15 in.

Nasser, Ahmed R., Ahmed M. Hasan, Amjad J. Humaidi, Ahmed Alkhayyat, Laith Alzubaidi, Mohammed A. Fadhel, José Santamaría, and Ye Duan. 2021. “IoT and Cloud Computing in Health-Care: A New Wearable Device and Cloud-Based Deep Learning Algorithm for Monitoring of Diabetes.” Electronics 10(21):2719. doi: 10.3390/electronics10212719.

Rahman, Atiqe Ur, Muhammad Saeed, Mazin Abed Mohammed, Mustafa Musa Jaber, and Begonya Garcia-Zapirain. 2022. “A Novel Fuzzy Parameterized Fuzzy Hypersoft Set and Riesz Summability Approach Based Decision Support System for Diagnosis of Heart Diseases.” Diagnostics (Basel, Switzerland) 12(7). doi: 10.3390/diagnostics12071546.

Rahman, Atiqe Ur, Muhammad Saeed, Mazin Abed Mohammed, Sujatha Krishnamoorthy, Seifedine Kadry, and Fatma Eid. 2022. “An Integrated Algorithmic MADM Approach for Heart Diseases’ Diagnosis Based on Neutrosophic Hypersoft Set with Possibility Degree-Based Setting.” Life 12(5):729. doi: 10.3390/life12050729.

Santoso, Budi. 2019. “An Analysis of Spam Email Detection Performance Assessment Using Machine Learning.” Jurnal Online Informatika 4(1):53. doi: 10.15575/join.v4i1.298.

Sarra, Raniya R., Ahmed M. Dinar, Mazin Abed Mohammed, and Karrar Hameed Abdulkareem. 2022. “Enhanced Heart Disease Prediction Based on Machine Learning and ?2 Statistical Optimal Feature Selection Model.” Designs 6(5):87. doi: 10.3390/designs6050087.

Soni, Mukesh, S. Gomathi, Pankaj Kumar, Prathamesh P. Churi, Mazin Abed Mohammed, and Akbal Omran Salman. 2021. “Hybridizing Convolutional Neural Network for Classification of Lung Diseases.” International Journal of Swarm Intelligence Research 13(2):1–15. doi: 10.4018/IJSIR.287544.

Terrada, Oumaima, Bouchaib Cherradi, Abdelhadi Raihani, and Omar Bouattane. 2019. “Classification and Prediction of Atherosclerosis Diseases Using Machine Learning Algorithms.” Pp. 1–5 in 2019 5th International Conference on Optimization and Applications (ICOA). IEEE.

Tougui, Ilias, Abdelilah Jilbab, and Jamal El Mhamdi. 2020. “Heart Disease Classification Using Data Mining Tools and Machine Learning Techniques.” Health and Technology 10(5):1137–44. doi: 10.1007/s12553-020-00438-1.

Vijayashree, J., and H. Parveen Sultana. 2020. “Heart Disease Classification Using Hybridized Ruzzo-Tompa Memetic Based Deep Trained Neocognitron Neural Network.” Health and Technology 10(1):207–16. doi: 10.1007/s12553-018-00292-2.

Unduhan

Diterbitkan

2024-07-31

Cara Mengutip

Fahrudin, G. F., Suroso, S., & Soim, S. (2024). Pengembangan Model Support Vector Machine untuk Meningkatkan Akurasi Klasifikasi Diagnosis Penyakit Jantung. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 7(3), 1418–1428. https://doi.org/10.32493/jtsi.v7i3.42254