Analisis Kekuatan Suspensi Belakang dan Pegas Daun dengan Variasi Beban Statis pada Prototipe Mobil Listrik KTM UNPAM
Keywords:
Kekuatan, Gaya, Tegangan, Beban Maksimal, Pegas DaunAbstract
Tujuan penelitian ini adalah untuk menelaah performa sistem suspensi belakang serta daya tahan pegas daun pada prototipe mobil listrik Teknik Mesin Universitas Pamulang (UNPAM) dengan variasi beban statis sebesar 250 kg, 400 kg, 550 kg, dan 700 kg. Metode penelitian yang digunakan adalah pendekatan eksperimental dengan menghitung gerak translasi pada suspensi, beban statis kendaraan, serta melakukan analisis kekuatan pada pegas daun berdasarkan berbagai variasi pembebanan. Penelitian ini bertujuan untuk mengidentifikasi perubahan tegangan dan kapasitas kekuatan pegas daun pada tiap variasi beban. Proses penelitian dilakukan melalui analisis dimensi mobil listrik, pemberian variasi beban, pengambilan data, dan perhitungan hasil pengujian. Hasil penelitian menunjukkan bahwa kenaikan beban dari 250 kg ke 700 kg berbanding lurus dengan peningkatan gaya dari 33,75 N hingga 90 N. Distribusi beban pada suspensi belakang roda kiri dan kanan menunjukkan keseimbangan dalam menopang muatan. Berdasarkan hasil perhitungan, pada beban 250 kg diperoleh tegangan sebesar 27,463 N/mm, defleksi 72 N/mm, dan momen bending 38,677 N/mm. Sedangkan pada beban 700 kg, tegangan meningkat menjadi 73,235 N/mm, defleksi 192 N/mm, dan momen bending 103,140 N/mm. Secara keseluruhan, semakin besar variasi beban, semakin tinggi nilai gaya, tegangan, defleksi, dan momen bending yang terjadi. Dengan demikian, daya angkut yang meningkat menyebabkan deformasi pada suspensi belakang dan pegas daun, menjauh dari posisi normal antar mata pegas daun.
Abstract: The purpose of this study is to examine the performance of the rear suspension system and the durability of the leaf spring on the electric car prototype developed by the Mechanical Engineering Department of Pamulang University (UNPAM) under static load variations of 250 kg, 400 kg, 550 kg, and 700 kg. The research employs an experimental approach by measuring the translational motion of the suspension, the vehicle’s static load, and conducting strength analysis of the leaf spring under different loading variations. This study aims to identify the changes in stress and strength capacity of the leaf spring for each load variation. The research process includes dimensional analysis of the electric car, application of varied loads, data collection, and result calculation. The findings indicate that the increase in load from 250 kg to 700 kg is directly proportional to the rise in force from 33.75 N to 90 N. The load distribution on the left and right rear suspensions shows balanced performance in supporting the weight. Based on the calculations, at a 250 kg load, the stress is 27.463 N/mm, the deflection is 72 N/mm, and the bending moment is 38.677 N/mm. Meanwhile, at a 700 kg load, the stress rises to 73.235 N/mm, the deflection to 192 N/mm, and the bending moment to 103.140 N/mm. Overall, greater load variations result in higher values of force, stress, deflection, and bending moment. Therefore, an increase in carrying capacity causes deformation in the rear suspension and leaf spring, deviating from the normal spacing between the leaf spring eyes.
References
[1] M. Sonntag, J. Mehmann, and F. Teuteberg, “Application of Industry 4.0 in the automotive sector,” Proc. Hambg. Int. Conf. Logist., no. 31, pp. 151–182, Dec. 2021, doi: 10.15480/882.3989.
[2] A. Aboazoum, “An Overview of the most Common Vehicle Suspension Problems,” Brill. Res. Artif. Intell., vol. 2, no. 3, pp. 120–124, Aug. 2022, doi: 10.47709/brilliance.v2i3.1655.
[3] Y. Mei, R. Wang, R. Ding, and Y. Jiang, “Classification Evolution, Control Strategy Innovation, and Future Challenges of Vehicle Suspension Systems: A Review,” Actuators, vol. 14, no. 10. pp. 1–33, 2025. doi: 10.3390/act14100485.
[4] Z. Wang, C. Liu, X. Zheng, L. Zhao, and Y. Qiu, “Advancements in Semi-Active Automotive Suspension Systems with Magnetorheological Dampers: A Review,” Applied Sciences, vol. 14, no. 17. pp. 1–23, 2024. doi: 10.3390/app14177866.
[5] P. Lantoine et al., “Car seat impact on driver’s sitting behavior and perceived discomfort during prolonged real driving on varied road types,” PLoS One, vol. 16, no. 11, p. e0259934, Nov. 2021, doi: 10.1371/journal.pone.0259934.
[6] S. A. Patil and I. D. More, “On-Road Ride Comfort Test and Simulation Analysis of Passenger Cars with Emphasis on Indian Suburban and Rural Road Conditions.” SAE International, 2016. doi: 10.4271/2016-01-1680 UI - 2016-01-1680.
[7] D. Dacova, “Ride comfort in road vehicles: a literature review,” Trans Motauto World, vol. 6, no. 2, pp. 65–69, 2021.
[8] A. G, A. H, E. V, M. G. T, P. L, and S. B. M, “Design of Variable Adaptive Suspension – A Review,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 5S, pp. 369–372, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Wicaksono Iman Triadi, Abdul Choliq, Nur Rohmat

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
