Analisis Kekerasan Hasil Penyambungan Baja SS 400 menggunakan Las Argon
Keywords:
Baja SS 400, Las Argon, Arus Pengelasan, Kekerasan Rockwell, Sambungan LasAbstract
Proses pengelasan merupakan salah satu metode penyambungan logam yang banyak digunakan dalam bidang konstruksi dan manufaktur. Pengelasan dapat menyebabkan perubahan sifat mekanik material akibat adanya siklus pemanasan dan pendinginan selama proses berlangsung. Salah satu sifat mekanik yang penting untuk diketahui adalah kekerasan, karena berkaitan dengan ketahanan material terhadap deformasi plastis dan keausan. Penelitian ini bertujuan untuk menganalisis pengaruh variasi arus pengelasan menggunakan las argon terhadap nilai kekerasan sambungan las baja SS 400. Metode penelitian dilakukan dengan pengelasan baja SS 400 menggunakan las argon (TIG) dengan variasi arus pengelasan sebesar 80 A, 90 A, dan 100 A. Pengujian kekerasan dilakukan menggunakan metode Rockwell (HRC) pada sambungan las. Setiap variasi arus diuji menggunakan tiga benda uji dengan lima titik pengujian pada masing-masing benda uji untuk memperoleh data yang representatif. Data hasil pengujian dianalisis secara deskriptif untuk melihat pengaruh variasi arus pengelasan terhadap nilai kekerasan. Hasil penelitian menunjukkan bahwa variasi arus pengelasan berpengaruh terhadap nilai kekerasan sambungan las baja SS 400. Nilai rata-rata kekerasan tertinggi diperoleh pada arus 90 A sebesar 19,9 HRC, sedangkan pada arus 100 A sebesar 19,87 HRC dan arus 80 A sebesar 19,67 HRC. Peningkatan arus dari 80 A ke 90 A meningkatkan nilai kekerasan, namun peningkatan arus hingga 100 A tidak memberikan peningkatan yang signifikan. Hasil penelitian ini diharapkan dapat menjadi referensi dalam penentuan parameter arus pengelasan yang optimal untuk menghasilkan sambungan las baja SS 400 dengan kekerasan yang baik.
Abstract Welding is one of the most widely used metal joining processes in construction and manufacturing industries. The welding process can alter the mechanical properties of materials due to the thermal cycles of heating and cooling that occur during welding. One important mechanical property to be evaluated is hardness, as it is closely related to a material’s resistance to plastic deformation and wear. This study aims to analyze the effect of welding current variations using argon welding on the hardness of welded joints of SS 400 steel. The research method involved welding SS 400 steel using Tungsten Inert Gas (TIG) welding with welding current variations of 80 A, 90 A, and 100 A. Hardness testing was conducted using the Rockwell (HRC) method on the welded joints. For each current variation, three specimens were tested with five indentation points on each specimen to obtain representative data. The obtained hardness data were analyzed descriptively to evaluate the effect of welding current variation on hardness values. The results indicate that welding current variation affects the hardness of SS 400 steel welded joints. The highest average hardness value was obtained at a welding current of 90 A, with a value of 19.9 HRC, while welding currents of 100 A and 80 A resulted in average hardness values of 19.87 HRC and 19.67 HRC, respectively. Increasing the welding current from 80 A to 90 A led to an increase in hardness; however, further increase to 100 A did not result in a significant improvement. These findings are expected to serve as a reference for determining optimal welding current parameters to achieve good hardness in SS 400 steel welded joints.
References
[1] M. A. Javed et al., “The Role of Metallurgical Features in the Microbially Influenced Corrosion of Carbon Steel: A Critical Review,” Microorganisms, vol. 12, no. 5. p. 892, 2024. doi: https://doi.org/10.3390/microorganisms12050892.
[2] N. Kisku, “Strengthening of High-Alloy Steel through Innovative Heat Treatment Routes,” S. C. A. Alfaro, W. Borek, and B. Tomiczek, Eds., London: IntechOpen, 2020. doi: https://doi.org/10.5772/intechopen.91874.
[3] M. Abdullah, M. A. Muttalib, Z. F. Alam, M. M. Hossain, and M. M. Hassan Parvez, “Effects of carbon levels and surface area variations on mild steel strength: A comparative study,” Results in Surfaces and Interfaces, vol. 17, p. 100333, 2024, doi: https://doi.org/10.1016/j.rsurfi.2024.100333.
[4] S. Dewangan et al., “Analysing strength, hardness and grain-structure of 0.2%-C steel specimens processed through an identical heating period with different continuous transformation rates,” Mater. Res. Express, vol. 9, no. 12, p. 126505, 2022, doi: https://doi.org/10.1088/2053-1591/aca7b2.
[5] A. R. A. Ramadhan, A. Muchlis, and P. A. T. Fajar, “Manufaktur Handle Lifter Dengan Material SS400,” Venus J. Publ. Rumpun Ilmu Tek., vol. 3, no. 1, pp. 57–68, 2025, doi: https://doi.org/10.61132/venus.v3i2.715.
[6] X. Liu, Y. Zhou, H. Dong, L. Sun, Y. Gao, and P. Zhang, “Microstructure and properties of the welding heat-affected zone in CoCrNi medium-entropy alloy,” J. Mater. Res. Technol., vol. 33, pp. 6867–6875, 2024, doi: https://doi.org/10.1016/j.jmrt.2024.11.073.
[7] A. N. T. Herdianto, Suheni, and A. A. Rosidah, “Effect of Welding Current and Electrode Movement on HAZ Width and Hardness of TIG Welded 304 Stainless Steel,” J. Appl. Sci. Manag. Eng. Technol., vol. 5, no. 1, pp. 1–6, 2024, doi: https://doi.org/10.31284/j.jasmet.2024.v5i1.5884.
[8] A. Kaimkuriya, B. Sethuraman, and M. Gupta, “Effect of Physical Parameters on Fatigue Life of Materials and Alloys: A Critical Review,” Technologies, vol. 12, no. 7. p. 100, 2024. doi: https://doi.org/10.3390/technologies12070100.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Azis Winardi, Suhendi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
