Perbandingan Kewajaran dan Kepantasan Harga Penginapan dengan Analisis Statistik Geospasial dan Kecerdasan Buatan, Studi Kasus Pulau Bali sebagai Destinasi Wisata Utama
Keywords:
Analisis Statistik Geospasial, Kecerdasan Buatan, Harga Penginapan, Pariwisata, Pulau BaliAbstract
Pulau Bali, sebagai destinasi pariwisata utama di Indonesia, menarik jutaan wisatawan setiap tahunnya. Penentuan harga penginapan yang sesuai dengan kualitas dan lokasi menjadi tantangan bagi pengusaha penginapan di Bali. Penentuan harga penginapan merupakan aspek krusial dalam industri perhotelan dan sektor pariwisata, yang harus mempertimbangkan lokasi geografis, fasilitas, kepuasan pelanggan, serta sarana dan prasarana di sekitarnya. Penelitian ini bertujuan menjelajahi dan membandingkan metode penentuan harga penginapan, melalui analisis statistik geospatial dan algoritma AI. Dengan pemahaman mendalam terhadap faktor-faktor yang memengaruhi harga penginapan, penelitian ini berupaya memberikan solusi yang akurat dan efisien dalam penentuan harga penginapan. Analisis statistik geospatial menunjukkan bahwa nilai rata-rata harga penginapan sejenis memiliki hubungan terbaik dengan seluruh algoritma AI yang digunakan. Algoritma AI yang paling sesuai dengan hasil analisis statistik geospatial adalah kelompok algoritma prediksi pada radius 3 km, dengan nilai korelasi sebesar 0.565171. Namun, perlu diperhatikan bahwa hasil penelitian ini mungkin kurang akurat akibat distorsi data yang berasal dari penginapan yang memasang harga tidak wajar. Fenomena ini dapat berdampak signifikan terhadap hasil analisis.
References
[1] A. A. A. N. S. R. Gorda and K. J. A. Sudharma, “Legalisasi Standar Tarif Hotel Dalam Ekosistem ‘New Normal’ Terintegrasi Bagi Pariwisata Bali Dampak Covid-19,” J. Pembang. Huk. Indones., vol. 5, no. 1, pp. 172–185, 2023, doi: 10.14710/jphi.v5i1.172-185.
[2] Moch Sambas, Shanti Pujilestari, Listijono Setyopratignjo, and Rina Kurniawati, “Analysis of Lodging and Competition on the Island of Bali during Covid-19 with Big Data,” Int. J. Travel. Hosp. Events, vol. 1, no. 3, pp. 214–228, 2022, doi: 10.56743/ijothe.v1i3.172.
[3] C. H. Ku, Y. C. Chang, Y. Wang, C. H. Chen, and S. H. Hsiao, “Artificial intelligence and visual analytics: A deep-learning approach to analyze hotel reviews & responses,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2019-Janua, pp. 5268–5277, 2019, doi: 10.24251/hicss.2019.634.
[4] O. Pomortseva, S. Kobzan, O. Voronkov, and A. Yevdokimov, “Geospatial modeling of the infrastructure facility optimal location,” E3S Web Conf., vol. 280, 2021, doi: 10.1051/e3sconf/202128011013.
[5] A. Tariq et al., “Forest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, Pakistan,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 1212–1233, 2021, doi: 10.1080/19475705.2021.1920477.
[6] F. Yalcin, “Determination of hedonic hotel room prices with spatial effect in Antalya,” Econ. Soc. y Territ., vol. xviii, pp. 697–734, 2018, doi: 10.22136/est20181228.
[7] L. Balyen and T. Peto, “Promising artificial intelligence–machine learning–deep learning algorithms in ophthalmology,” Asia-Pacific J. Ophthalmol., vol. 8, no. 3, pp. 264–272, 2019, doi: 10.22608/APO.2018479.
[8] T. Hu and H. Song, “Analysis of Influencing Factors and Distribution Simulation of Budget Hotel Room Pricing Based on Big Data and Machine Learning from a Spatial Perspective,” Sustain., vol. 15, no. 1, pp. 0–18, 2023, doi: 10.3390/su15010617.
[9] Z. Zhang, Q. Ye, and R. Law, “Determinants of hotel room price: An exploration of travelers’ hierarchy of accommodation needs,” Int. J. Contemp. Hosp. Manag., vol. 23, no. 7, pp. 972–981, 2011, doi: 10.1108/09596111111167551.
[10] S. K. Punia, M. Kumar, T. Stephan, G. G. Deverajan, and R. Patan, “Performance analysis of machine learning algorithms for big data classification: Ml and ai-based algorithms for big data analysis,” Int. J. E-Health Med. Commun., vol. 12, no. 4, pp. 60–75, 2021, doi: 10.4018/IJEHMC.20210701.oa4.
[11] M. Ivić, “Artificial intelligence and geospatial analysis in disaster management,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 3/W8, pp. 161–166, 2019, doi: 10.5194/isprs-archives-XLII-3-W8-161-2019.
[12] J. Yu, “Exploring the role of healthy green spaces, psychological resilience, attitude, brand attachment, and price reasonableness in increasing hotel guest retention,” Int. J. Environ. Res. Public Health, vol. 17, no. 1, 2020, doi: 10.3390/ijerph17010133.
[13] K. A. Fachrudin, D. L. Tarigan, and M. F. Iman, “Analisis Rating dan Harga Kamar Hotel Bintang Lima di Indonesia,” J. Akuntansi, Keuangan, dan Manaj., vol. 3, no. 3, pp. 237–252, 2022, doi: 10.35912/jakman.v3i3.1107.
[14] S. Singh, “Comparative Study Id3 , Cart and C4 . 5 Decision Tree Algorithm : a Survey,” Int. J. Adv. Inf. Sci. Technol., vol. 27, no. 27, pp. 97–103, 2014, doi: 10.15693/ijaist/2014.v3i7.47-52.
[15] M. Al Shehhi and A. Karathanasopoulos, “Forecasting hotel room prices in selected GCC cities using deep learning,” J. Hosp. Tour. Manag., vol. 42, no. April, pp. 40–50, 2020, doi: 10.1016/j.jhtm.2019.11.003.
[16] B. Pirouz, H. J. Nejad, G. Violini, and B. Pirouz, “The role of artificial intelligence, MLR and statistical analysis in investigations about the correlation of swab tests and stress on health care systems by COVID-19,” Inf., vol. 11, no. 9, 2020, doi: 10.3390/info11090454.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Handono Bayuadji, Shanti Pujilestari, Levyda, Ina Djamhur
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.