Sistem Pengendalian dan Pemantauan Terpusat pada Perangkat IoT Terdistribusi

Authors

  • Eka Stephani Sinambela Computer Technology, Vocational Faculty, Institut Teknologi Del Toba, 22381
  • Frengki Simatupang Computer Technology, Vocational Faculty, Institut Teknologi Del Toba, 22381
  • Gerry Italiano Wowiling Computer Technology, Vocational Faculty, Institut Teknologi Del Toba, 22381
  • Marojahan Mula Timbul Sigiro Computer Technology, Vocational Faculty, Institut Teknologi Del Toba, 22381
  • Istas Pratomo Manalu Computer Technology, Vocational Faculty, Institut Teknologi Del Toba, 22381
  • Sari Muthia Silalahi Computer Technology, Vocational Faculty, Institut Teknologi Del Toba, 22381
  • Pandapotan Siagian Computer Technology, Vocational Faculty, Institut Teknologi Del Toba, 22381

DOI:

https://doi.org/10.32493/pjte.v8i1.48473

Keywords:

IoT, Kontrol Terpusat, Sistem Pemantauan, Arsitektur Master-Agent, API Gateway, Otomatisasi

Abstract

Perkembangan pesat Internet of Things (IoT) telah memungkinkan berbagai aplikasi cerdas; namun, pengelolaan banyak perangkat IoT yang tersebar secara manual masih kurang efisien dan memakan waktu. Penelitian ini bertujuan untuk mengembangkan sistem pemantauan dan pengendalian terpusat untuk perangkat IoT yang tersebar dengan menggunakan arsitektur master-agent. Master berfungsi sebagai pusat kendali yang mengumpulkan data dari berbagai agent serta memungkinkan manajemen terpusat melalui API Gateway yang memfasilitasi komunikasi dan kontrol perangkat. Prototipe yang dikembangkan terdiri dari dua mode kontrol: kontrol manual untuk menyalakan dan mematikan lampu melalui antarmuka berbasis web, serta kontrol otomatis untuk pemantauan lingkungan menggunakan berbagai sensor. Hasil pengujian menunjukkan bahwa sistem ini mampu mengelola perangkat IoT secara real-time dengan efektif. Pengujian kontrol manual berhasil mengaktifkan dan menonaktifkan lampu secara jarak jauh. Pengujian kontrol otomatis untuk pemantauan tanaman mencatat suhu lingkungan stabil antara 44–46°C, kelembaban tanah pada 27%, variasi jarak sensor ultrasonik antara 2–15 cm, serta fluktuasi intensitas cahaya antara 29–120 Cd. Hasil ini membuktikan bahwa sistem dapat merespons perubahan lingkungan secara dinamis, seperti mengaktifkan pompa air saat kelembaban tanah rendah atau menyesuaikan pencahayaan berdasarkan data real-time. Dengan menerapkan arsitektur RESTful API dan komunikasi berbasis JSON, sistem ini menawarkan skalabilitas tinggi dan fleksibilitas dalam pengembangan jaringan IoT. Penelitian ini menyimpulkan bahwa sistem pengendalian dan pemantauan IoT secara terpusat meningkatkan efisiensi, fleksibilitas, serta kemudahan dalam pengelolaan perangkat, sehingga dapat diterapkan dalam berbagai bidang seperti smart home, pertanian cerdas, dan otomatisasi industri.

References

[1] R. Abdmeziem and D. Tandjaoui, “Internet of Things: Concept, Building blocks, Applications and Challenges,” 2014.

[2] M. Lombardi, F. Pascale, and D. Santaniello, “Internet of things: A general overview between architectures, protocols and applications,” Inf., vol. 12, no. 2, pp. 1–21, 2021, doi: 10.3390/info12020087.

[3] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,” J. Electr. Comput. Eng., vol. 2017, 2017, doi: 10.1155/2017/9324035.

[4] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for future technology enhancement: a review,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0268-2.

[5] T. Domínguez-Bolaño, O. Campos, V. Barral, C. J. Escudero, and J. A. García-Naya, “An overview of IoT architectures, technologies, and existing open-source projects,” Internet of Things (Netherlands), vol. 20, p. 100626, 2022, doi: 10.1016/j.iot.2022.100626.

[6] E. Simeoni et al., “A Secure and Scalable Smart Home Gateway to Bridge Technology Fragmentation,” MDPI, pp. 1–23, 2021, doi: https://doi.org/10.3390/s21113587.

[7] Y. M. Algani, “Integration of Internet Protocol and Embedded System On IoT Device Automation,” researchsquare, pp. 1–14, 2021, doi: https://doi.org/10.21203/rs.3.rs-947704/v1 License:

[8] I. Essamlali, H. Nhaila, and M. El Khaili, “Advances in machine learning and IoT for water quality monitoring: A comprehensive review,” Heliyon, vol. 10, no. 6, p. e27920, 2024, doi: 10.1016/j.heliyon.2024.e27920.

[9] M. Mohamed, K. Alosman, M. Mohamed King Abdul Aziz university, S. Arabia, and K. Alosman King Abdul Aziz university, “An IoT-Enabled Framework for Smart City Infrastructure Management,” 2024.

[10] T. Zvarivadza et al., “On the impact of Industrial Internet of Things (IIoT) - mining sector perspectives,” Int. J. Mining, Reclam. Environ., vol. 38, no. 10, pp. 771–809, 2024, doi: 10.1080/17480930.2024.2347131.

[11] C. Jin, J. Su, and W. Sun, “Design and implementation of smart home system based on IOS platform,” vol. 24, no. June, p. 25, 2022, doi: 10.1117/12.2642582.

[12] P. Rajnandini, T. Tambe, V. Vishwakarma, and R. Ansari, “International Journal of Research Publication and Reviews Water Level Monitoring System Using IOT,” vol. 3, no. 11, pp. 1159–1161, 2022.

[13] D. Nettikadan and S. Raj M S, “Smart Community Monitoring System using Thingspeak IoT Plaform,” Int. J. Appl. Eng. Res., vol. 13, pp. 13402–13408, Sep. 2018.

[14] J. Kandimalla and D. D. R. Kishore, “Web Based Monitoring of Solar Power Plant UsingOpen Source IOT Platform Thingspeak andArduino,” Int. J. Mod. Trends Sci. Technol., vol. 03, no. 4, pp. 16–21, 2017.

[15] D. Witczak and S. Szymoniak, “Review of Monitoring and Control Systems Based on Internet of Things,” Appl. Sci., vol. 14, no. 19, 2024, doi: 10.3390/app14198943.

[16] Z. Wu, K. Qiu, and J. Zhang, “A Smart Microcontroller Architecture for the Internet of Things,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–17, 2020, doi: doi:10.3390/s20071821.

[17] G. M. Kapitsaki, A. P. Achilleos, P. Aziz, and A. C. Paphitou, “Sensoman: Social management of context sensors and actuators for IoT,” J. Sens. Actuator Networks, vol. 10, no. 4, 2021, doi: 10.3390/jsan10040068.

[18] O. Arshi and S. Mondal, “Advancements in sensors and actuators technologies for smart cities: a comprehensive review,” Smart Constr. Sustain. Cities, vol. 1, no. 1, p. 18, 2023, doi: 10.1007/s44268-023-00022-2.

[19] M. Mazo Jr. and P. Tabuada, “Decentralized event-triggered control over wireless sensor/actuator networks,” 2010. doi: 10.48550/arXiv.1004.0477.

[20] N. Dipsis and K. Stathis, “A RESTful middleware for AI controlled sensors, actuators and smart devices,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 7, pp. 2963–2986, 2020, doi: 10.1007/s12652-019-01439-3.

[21] M. Bauer et al., “The context API in the OMA next generation service interface,” 2010 14th Int. Conf. Intell. Next Gener. Networks "Weaving Appl. Into Netw. Fabr. ICIN 2010 - 2nd Int. Work. Bus. Model. Mob. Platforms, BMMP 10, no. May 2014, 2010, doi: 10.1109/ICIN.2010.5640931.

[22] F. Cirillo, G. Solmaz, E. L. Berz, M. Bauer, B. Cheng, and E. Kovacs, “A Standard-Based Open Source IoT Platform: FIWARE,” IEEE Internet Things Mag., vol. 2, no. 3, pp. 12–18, 2020, doi: 10.1109/iotm.0001.1800022.

[23] S. Jeong, S. Kim, and J. Kim, “City Data Hub: Implementation of Standard-Based Smart City Data Platform for Interoperability,” Sensors, vol. 20, no. 23. 2020. doi: 10.3390/s20237000.

[24] T. Domínguez-Bolaño, V. Barral, C. J. Escudero, and J. A. García-Naya, “An IoT system for a smart campus: Challenges and solutions illustrated over several real-world use cases,” Internet of Things (Netherlands), vol. 25, no. February, p. 101099, 2024, doi: 10.1016/j.iot.2024.101099.

[25] R. Maurya, “Application of Restful APIs in IOT: A Review,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. 2, pp. 145–151, 2021, doi: 10.22214/ijraset.2021.33013.

[26] A. A. Kumar and D. Tl, “Security measures implemented in RESTful API Development,” vol. 07, no. September, pp. 105–112, 2024.

[27] S. Purba, M. Hariri, R. J. Banjarnahor, and S. N. Siregar, “LED Control System Using Arduino Wemos D1 R1 Based on Web Server Communication Via Internet of Things (IoT),” Formosa J. Sci. Technol., vol. 2, no. 6, pp. 1397–1408, 2023, doi: 10.55927/fjst.v2i6.4436.

[28] P. R.Dinkir, Patnaik, “A Comparative Study of Arduino, Raspberry Pi and ESP8266 as IoT Development Board,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 5, pp. 2350–2352, 2017.

[29] G. R. Choudhari, P. A. Dagale, I. S. Dashetwar, R. R. Desai, and A. A. Marathe, “IoT-based Smart Gardening System,” J. Phys. Conf. Ser., vol. 2601, 2023, doi: 10.1088/1742-6596/2601/1/012006.

[30] C. R. Gunawan, D. Ramadani, and F. Amir, “Monitoring System for Soil Moisture and Lighting in Decorative Plants,” Proc. 2nd Int. Conf. Sci. Technol. Mod. Soc. (ICSTMS 2020), vol. 576, no. Icstms 2020, pp. 332–335, 2021, doi: 10.2991/assehr.k.210909.074.

[31] A. R. A. Rashid, M. K. A. Azmi, W. M. Mukhtar, and N. A. M. Taib, “IoT-Integrated Smart Gardening System for Real-Time Monitoring and User-Controlled with Smart Film,” J. Telecommun. Electron. Comput. Eng., vol. 17, no. 1, pp. 11–17, 2025, doi: 10.54554/jtec.2025.17.01.002.

Downloads

Published

2024-07-30

How to Cite

Sinambela, E. S., Simatupang, F., Wowiling, G. I., Sigiro, M. M. T., Manalu, I. P., Silalahi, S. M., & Siagian, P. (2024). Sistem Pengendalian dan Pemantauan Terpusat pada Perangkat IoT Terdistribusi. Piston: Journal of Technical Engineering, 8(1), 35–44. https://doi.org/10.32493/pjte.v8i1.48473

Issue

Section

Articles