Design and Construction of a Satay Grill Based on Thermoelectric Generator as a Source of Electrical Energy
DOI:
https://doi.org/10.32493/pjte.v8i2.48616Keywords:
Satay Grill, Thermoelectric Generator, Aluminum, Charcoal, HeatsinkAbstract
Thermoelectric Generator is a technology used to generate electrical energy by utilizing the Seebeck effect, which occurs due to the temperature difference between the hot and cold sides. This study aims to determine the voltage generated by the thermoelectric generator from the process of burning satay using coconut shell charcoal. In this experiment, 6 pieces of thermoelectric generator type TEG1-241-1. 4-1. 2 were used which were connected in series. The pieces were mounted on aluminum material measuring 165 x 110 x 15 mm, and equipped with a heatsink at the bottom of the satay grill body for cooling. The heatsink used is an extrude model. Testing began when the charcoal had reached a red color. The maximum voltage generated reached 2,25 V in seven minutes, with a temperature difference reaching 5,9 °C. The temperature on the hot side was recorded at 102,2 °C, while on the cold side it was 96,3 °C.
References
[1] B. E. T. Adiyastiti, E. Suryanto, and Rusman, “Pengaruh Lama Pembakaran Dan Jenis Bahan Bakar Terhadap Kualitas Sensoris Dan Kadar Benzo(a)Piren Sate Daging Kambing,” Bul. Peternak., vol. 38, no. 3, p. 189, 2014, doi: 10.21059/buletinpeternak.v38i3.5255.
[2] L. Nulhakim, F. Rachmanu, A. I. Tauvana, Widodo, and M. Yusuf, “Pemanfaatan Panas Pemanggang Sate sebagai Sumber Energi Listrik Berbasis Termoelektrik Generator,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 15, no. 2, pp. 1–7, 2024, doi: 10.24176/simet.v15i2.11391.
[3] H. Z. Jifu He, Kewen Li, Lin Jia, Yuhao Zhu and J. Linghu, “Advances in the applications of thermoelectric generators,” Appl. Therm. Eng., vol. 236, no. D, p. 121813, 2024, doi: 10.1016/j.applthermaleng.2023.121813.
[4] D. Krsimantoro, A. Soetedjo, and F. Y. Limpraptono, “Aplikasi Thermoelectric Generator (TEG) pada Kompor Gas Menggunakan DC/DC Boost Konverter dan Kontrol MPPT Incremental Conductance (INC),” Magn. J. Mhs. Tek. Elektro, vol. 7, no. 2, pp. 88–97, 2023.
[5] P. Krushi and S. Wango, “Smart Power Generation From Waste Heat By Thermo Electric Generator,” Int. J. Mech. Prod. Eng., pp. 45–49, 2016.
[6] A. P. J. David, “Thermoelectric Generator: Mobile Device Charger,” in 8th CEBU International Conference on “Recent Trends in Engineering and Technology” (RTET-17), Malolos City, Philippines.: Information and Communications Technology Department, Bulacan State University, 2017, pp. 1–5. doi: 10.17758/URUAE.AE09171002.
[7] L. Nulhakim, “Optimalisasi Thermoelectric Cooling Sebagai Alat Penghilang Embun Kaca Depan Kendaraan,” Energi & Kelistrikan, vol. 13, no. 2, pp. 223–230, 2021, doi: 10.33322/energi.v13i2.1522.
[8] L. Nulhakim, “Uji Unjuk Kerja Pendingin Ruangan Berbasis Thermoelectric Cooling,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 1, pp. 85–90, 2017, doi: 10.24176/simet.v8i1.829.
[9] L. Nulhakim and F. Rachmanu, “Pemanfaatan Thermoelectric Cooling Sebagai Penghilang Embun Kaca Depan Angkutan Umum Perkotaan (Angkot),” Elektra, vol. 3, no. 2, pp. 29–34, 2018.
[10] N. Suryanto, A. Aziz, and R. I. Mainil, “Pengujian Thermoelectric Generator (TEG) dengan Sumber Kalor Electric Heater 60 Volt Menggunakan Air Pendingin pada Temperatur Lingkungan,” J. Online Mhs. Bid. Tek. dan Sains, vol. 4, no. 2, pp. 3–7, 2017.
[11] F. Al Farissy, “Studi Eksperimental Termoelektrik Generator (TEG) Dengan Variasi Fin dan Non Fin Pada Fluida Panas Supra X 125 CC,” Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Surakarta, 2018.
[12] Ryanuargo, S. Anwar, and S. P. Sari, “Generator Mini dengan Prinsip Termoelektrik dari Uap Panas Kondensor pada Sistem Pendingin,” J. Rekayasa Elektr., vol. 10, no. 4, pp. 180–185, 2013, doi: 10.17529/jre.v10i4.1108.
[13] J. Sumarjo, A. Santosa, and M. I. Permana, “Pemanfaatan Sumber Panas Pada Kompor Menggunakan 10 Termoelektrik Generator Dirangkai Secara Seri Untuk Aplikasi Lampu Penerangan,” J. Mesin Teknol. (SINTEK Jurnal), vol. 11, no. 2, pp. 123–128, 2017.
[14] C. Liu, P. Chen, and K. Li, “A 1 KW Thermoelectric Generator for Low-temperature Geothermal Resources,” in Thirty-Ninth Workshop on Geothermal Reservoir Engineering, California: Stanford University, 2014, pp. 1–12.
[15] Nulhakim Lukman, M. I. Subekti, and D. Rahmat, “Optimalisasi Termoelektrik Melalui Heat Gain Sebagai Penghasil Listrik,” Elektra, vol. 4, no. 2, pp. 1–6, 2019.
[16] J. Wang, S. Liu, and L. Li, “Experiments and modeling on thermoelectric power generators used for waste heat recovery from hot water pipes,” Energy Procedia, vol. 158, pp. 1052–1058, 2019, doi: 10.1016/j.egypro.2019.01.254.
[17] A. I. Tauvana, Widodo, F. Rachmanu, L. Hakim, Syafrizal, and M. I. Subekti, “Pelatihan Pengelasan SMAW IG SMK se-Kabupaten Purwakarta, Karawang, dan Bogor,” BERNAS J. Pengabdi. Kpd. Masy., vol. 2, no. 2, pp. 546–551, 2021, doi: 10.31949/jb.v2i2.955.
[18] L. Nulhakim, A. I. Tauvana, W. Widodo, F. Rachmanu, S. Syafrizal, and M. I. Subekti, “Perbaikan Jalan Desa Kembangkuning Kecamatan Jatiluhur Kabupaten Purwakarta,” BERNAS J. Pengabdi. Kpd. Masy., vol. 2, no. 4, pp. 841–847, 2021, doi: 10.31949/jb.v2i4.1497.
[19] O. C. Igwilo, G. Mathurine, I. A. Onyegbadue, and R. U. Azike, “Development and characterization of a thermoelectric generator power system for charging mobile phones,” UNIZIK J. Eng. Appl. Sci., vol. 2, no. 3, pp. 427–440, 2023.
[20] H. Marpaung, A. Singarimbun, W. Srigutomo, and N. K. Lasmi, “Thermoelectric Application of TEG1-241-1.4-1.2 for Power Generation from Low Temperature Geothermal Fluid,” Adv. Sci. Technol., vol. 126, pp. 67–77, 2023, doi: 10.4028/p-206g0r.
[21] N. H. Pranita, K. Azura, A. Ismardi, T. A. Ajiwiguna, and I. P. Handayani, “Implementing thermoelectric generator on CPU processor,” ICCEREC 2015 - Int. Conf. Control. Electron. Renew. Energy Commun., vol. 2, no. 2, pp. 108–111, 2015, doi: 10.1109/ICCEREC.2015.7337026.
[22] H. Marpaung, M. Djamal, L. Pasasa, A. Singarimbun, W. Srigutomo, and N. K. Lasmia, “Inovasi Penerangan: Lilin Sebagai Alternatif Energi Listrik Berbasis Termoelektrik. Sebuah Kajian Eksperimental,” J. Rev. Pendidik. Dan Pengajaran, vol. 6, no. 4, pp. 3288–3299, 2023, doi: 10.31004/jrpp.v6i4.22628.
[23] J. E. Poetro and C. R. Handoko, “Analisis Kinerja Sistem Pendingin Arus Searah yang Menggunakan Heatsink Jenis Extruded dibandingkan dengan Heatsink Jenis Slot,” J. Tek. Mesin, vol. 21, no. 2, pp. 178–189, 2013.
[24] B. R. Diwangkara, “Analisis Pengaruh Tipe Heatsink Terhadap Kinerja Sistem Pendingin Portable Mini Refrigerator,” Teknik Mesin, Universitas Jember, 2019.
[25] N. Tumbel, A. K. Makalalag, and S. Manurung, “Proses Pengolahan Arang Tempurung Kelapa Menggunakan Tungku Pembakaran Termodifikasi,” J. Penelit. Teknol. Ind., vol. 11, no. 2, pp. 83–92, 2019.
[26] M. Tirono and A. Sabit, “Efek Suhu pada Proses Pengarangan terhadap Nilai Kalor Arang Tempurung Kelapa (Coconut Shell Charcoal),” J. Neutrino, vol. 3, no. 2, pp. 143–152, 2012, doi: 10.18860/neu.v0i0.1647.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lukman Nulhakim, Syafrizal, Ade Irvan Tauvana, Widodo, Farhan Nurhidayatuloh

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

