Multihop Data Transmission Using LoRa Technology
DOI:
https://doi.org/10.32493/pjte.v8i2.48926Keywords:
LoRa, Multihop, Internet of Things (IoT), Packet Loss, Received Signal Strength Indicator (RSSI)Abstract
The use of Long Range (LoRa) technology in Internet of Things (IoT) networks has grown rapidly to support applications that require wide coverage with low energy consumption. However, physical obstacles and indoor use often cause significant signal attenuation, reducing range and increasing energy consumption. To overcome these limitations, this study implements multihop communication using LoRa repeaters to extend network coverage. In this study, DHT11 sensors are used to measure air temperature and humidity, with data transmitted through a multihop scheme consisting of three LoRa devices: transmitter, repeater, and receiver. The purpose of this study is to analyze the performance of LoRa communication in a multihop scheme, focusing on measuring key parameters such as Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), and Packet Loss. Point-to-point experiments showed that the RSSI was in the range of -103 dBm to -105.5 dBm, while in multihop, the recorded RSSI ranged from -102 dBm to -105 dBm. Meanwhile, the SNR in point-to-point ranged from -2 dB to -22 dB, and in multihop, the SNR value varied from -1.00 dB to -14.50 dB. At a distance of 1.5 kilometers, the point-to-point method suffers from a high packet loss of 65%, with only 23 out of 67 packets received, indicating inadequate performance. In contrast, the multihop method successfully reduces the packet loss to only 0.8%, with 33 out of 36 packets received, indicating improved data transmission quality and reliability. Tests show that the use of LoRa repeaters in multihop networks can significantly extend communication range and improve energy efficiency, with successful data delivery and performance that meets expectations. This research makes an important contribution to understanding the implementation of multihop LoRa networks, especially in the context of IoT applications that require wide coverage in congested environments.
References
[1] M. E. E. Alahi et al., “Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends,” Sensors, vol. 23, no. 11, 2023, doi: 10.3390/s23115206.
[2] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations,” Int. J. Inf. Manage., vol. 51, p. 101952, 2020, doi: 10.1016/j.ijinfomgt.2019.05.008.
[3] A. Safi et al., “A Fault Tolerant Surveillance System for Fire Detection and Prevention Using LoRaWAN in Smart Buildings,” Sensors, vol. 22, no. 21, 2022, doi: 10.3390/s22218411.
[4] G. R. Zibetti, J. A. Wickboldt, and E. P. de Freitas, “Context-aware environment monitoring to support LPWAN-based battlefield applications,” Comput. Commun., vol. 189, pp. 18–27, 2022, doi: 10.1016/j.comcom.2022.02.020.
[5] A. Diane, O. Diallo, and E. H. M. Ndoye, “A systematic and comprehensive review on low power wide area network: characteristics, architecture, applications and research challenges,” Discov. Internet Things, vol. 5, no. 1, p. 7, 2025, doi: 10.1007/s43926-025-00097-6.
[6] A. Askhedkar, B. Chaudhari, and M. Zennaro, “18 - Hardware and software platforms for low-power wide-area networks,” in LPWAN Technologies for IoT and M2M Applications, B. S. Chaudhari and M. Zennaro, Eds., Academic Press, 2020, pp. 397–407. doi: 10.1016/B978-0-12-818880-4.00019-3.
[7] P. D. P. Adi, A. Kitagawa, D. A. Prasetya, R. Arifuddin, and S. Yoseph, “LoRaWAN Technology in Irrigation Channels in Batu Indonesia,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 3, pp. 522–538, 2022, doi: 10.26555/jiteki.v7i3.22258.
[8] T. Istiana, R. Y. Mardyansyah, and G. . B. Dharmawan, “Kajian Pemanfaatan IoT Berbasis LPWAN Untuk Jaringan Akuisisi Data ARG,” Elektron J. Ilm., vol. 12, no. 1, pp. 1–6, 2020, doi: 10.30630/eji.12.1.155.
[9] T. A. Salih and M. S. Noori, “Using LoRa Technology to Monitor and Control Sensors in the Greenhouse,” IOP Conf. Ser. Mater. Sci. Eng., vol. 928, no. 3, p. 32058, 2020, doi: 10.1088/1757-899X/928/3/032058.
[10] S. Ahmed et al., “Vegetation Effects on LoRa-Based Wireless Sensor Communication for Remote Monitoring of Automatic Orchard Irrigation Status,” IoT, vol. 6, no. 1. 2025. doi: 10.3390/iot6010002.
[11] V. A. Dambal, S. Mohadikar, A. Kumbhar, and I. Guvenc, “Improving LoRa Signal Coverage in Urban and Sub-Urban Environments with UAVs,” in 2019 International Workshop on Antenna Technology (iWAT), 2019, pp. 210–213. doi: 10.1109/IWAT.2019.8730598.
[12] J. R. Cotrim and J. H. Kleinschmidt, “LoRaWAN Mesh Networks: A Review and Classification of Multihop Communication,” Sensors, vol. 20, no. 15. 2020. doi: 10.3390/s20154273.
[13] M. S. Aslam et al., “Exploring Multi-Hop LoRa for Green Smart Cities,” IEEE Netw., vol. 34, no. 2, pp. 225–231, 2020, doi: 10.1109/MNET.001.1900269.
[14] Y. Lalle, M. Fourati, L. C. Fourati, and J. P. Barraca, “Routing Strategies for LoRaWAN Multi-Hop Networks: A Survey and an SDN-Based Solution for Smart Water Grid,” IEEE Access, vol. 9, pp. 168624–168647, 2021, doi: 10.1109/ACCESS.2021.3135080.
[15] A. Abrardo and A. Pozzebon, “A Multi-Hop LoRa Linear Sensor Network for the Monitoring of Underground Environments: The Case of the Medieval Aqueducts in Siena, Italy,” Sensors, vol. 19, no. 2. 2019. doi: 10.3390/s19020402.
[16] M. Al mojamed, “LTM-LoRaWAN: A Multi-Hop Communication System for LoRaWAN,” Electronics, vol. 12, no. 20. 2023. doi: 10.3390/electronics12204225.
[17] R. Berto, P. Napoletano, and M. Savi, “A LoRa-Based Mesh Network for Peer-to-Peer Long-Range Communication,” Sensors, vol. 21, no. 13. 2021. doi: 10.3390/s21134314.
[18] M. S. R. Firmansyah, “Analisis Parameter LoRa pada Lingkungan Outdoor,” Universitas Dinamika, 2020.
[19] Z. Arief, P. H. Trisnawan, and A. Basuki, “Implementasi Komunikasi Multi-Hop Menggunakan Metode Controlled Flooding Pada Wireless Sensor Network Berbasis LoRa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 7, pp. 2154–2162, Aug. 2020.
[20] R. Pueyo Centelles, “Towards LoRa Mesh Networks for the IoT,” Universitat Politècnica de Catalunya, Barcelona, 2021. doi: 10.5821/dissertation-2117-360904.
[21] F. Z. Makarim and Y. Rafsyam, “Pengiriman Data Polusi Udara Menggunakan Komunikasi Long Range (LoRa),” Orbith Maj. Ilm. Pengemb. Rekayasa dan Sos., vol. 18, no. 1, pp. 22–27, 2022, doi: 10.32497/orbith.v18i1.3560.
[22] U. Alexander, I. Bolshakov, L. Voskov, and A. Rolich, “Experimental LoRa Network Power Consumption Model Using Multi-Hops,” in 2022 Moscow Workshop on Electronic and Networking Technologies (MWENT), 2022, pp. 1–7. doi: 10.1109/MWENT55238.2022.9802378.
[23] S. Schultheis, “LoRa Sensor mittels Arduino und LoRa Shield,” Stefans Blog. 2017. [Online]. Available: https://stefan.schultheis.at/2017/lora-sensor-arduino-lora-shield/
[24] A. Yanziah, S. Soim, and M. M. Rose, “Analisis Jarak Jangkauan LoRa dengan Parameter RSSI dan Packet Loss pada Area Urban,” J. Teknol. Technoscientia, vol. 13, no. 1, pp. 59–67, Aug. 2020, doi: 10.34151/technoscientia.v13i1.3031.
[25] A. Sagala, R. Lubis, H. Sitanggang, R. Sinaga, and S. Hutapea, “Implementation LoRaWAN End Node Tracking,” IOP Conf. Ser. Earth Environ. Sci., vol. 1083, no. 1, p. 12061, 2022, doi: 10.1088/1755-1315/1083/1/012061.
[26] A. Osorio, M. Calle, J. D. Soto, and J. E. Candelo-Becerra, “Routing in LoRaWAN: Overview and Challenges.,” IEEE Commun. Mag., vol. 58, no. 6, pp. 72–76, 2020, doi: 10.1109/MCOM.001.2000053.
[27] H. P. Tran, W.-S. Jung, D.-S. Yoo, and H. Oh, “Design and Implementation of a Multi-Hop Real-Time LoRa Protocol for Dynamic LoRa Networks,” Sensors, vol. 22, no. 9. 2022. doi: 10.3390/s22093518.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Istas Pratomo Manalu, Marojahan Timbul Mula Sigiro, Frengki Simatupang, Andreas A. P. Manik, Necia G. A. Sitohang, Goldi Pardede

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

