Characteristics of Aluminium 7075 Tool Profile for HDPE and PP Welding Against Tensile and Bending
DOI:
https://doi.org/10.32493/pjte.v9i1.51351Keywords:
Friction Stir Welding (FSW), HDPE, Polypropylene (PP), AA7075 Tool, Tool Profile, Dissimilar Polymer WeldingAbstract
The increasing demand for lightweight materials in the automotive industry has led to the replacement of metal vehicle components with polymers such as High-Density Polyethylene (HDPE) and Polypropylene (PP) to support sustainable development and emission reduction. However, welding dissimilar polymers presents a challenge due to the limitations of conventional techniques. Friction Stir Welding (FSW) emerges as a promising solution by enabling solid-state joining below the melting point. This study investigates the effect of AA7075 tool profile variations—plain cylinder, threaded cylinder, and grooved cone—on the mechanical properties and macrostructure of HDPE-PP FSW joints. Experimental welding was performed at a rotational speed of 2920 rpm and a travel speed of 30 mm/min, with analysis including tensile tests (ASTM D638), bending tests (ASTM D790), temperature measurements, and macrostructural observations. Results show that the threaded cylindrical tool yielded the highest tensile strength (4 MPa) due to effective material flow, while the grooved cone tool produced the highest bending strength (6,8 MPa) through improved vertical and radial mixing. The plain cylindrical tool showed the weakest performance with significant welding defects. Overall, tool geometry significantly influences weld quality, and selection should be based on the mechanical requirements of the application. These findings emphasize the importance of tool design optimization to enhance joint strength and structural integrity in dissimilar thermoplastic FSW.
References
[1] Y. Sun et al., “Investigation of tool offset on the microstructure and mechanical properties of AA6061-T6/PC Friction Stir Butt Welding joint,” J. Reinf. Plast. Compos., vol. 44, no. 5–6, pp. 295–308, Dec. 2023, doi: 10.1177/07316844231219319.
[2] Sugiarto, M. S. Ma’arif, A. Wahjudi, and A. L. Ananto, “Analisis Mekanik Sambungan Dissimilar Friction Stir Welding Antara High Density Polyethylene Dengan Polypropylene,” Seminar Nasional Tahunan Teknik Mesin XXII 2024. Indonesia, pp. 205–209, 2025. doi: 10.71452/590657.
[3] J. N. Septiyanto, A. Azis, N. Syafiqri, F. F. Firdaus, and R. Y. Parapat, “Potensi Nanokomposit dalam Mengoptimalkan Desain Bodi Kendaraan Modern,” Sci. J. Ilm. Sains dan Teknol., vol. 3, no. 3, pp. 169–188, 2025.
[4] A. R. Romadhan, A. W. Nugroho, T. Suwanda, and R. Wilza, “Sifat Tarik dan Struktur Mikro Sambungan Las Gesek Tak Sejenis Baja-Tembaga,” JMPM (Jurnal Mater. dan Proses Manufaktur), vol. 3, no. 1, pp. 20–27, Jun. 2019, doi: 10.18196/jmpm.3133.
[5] A. Muchhadiya et al., “Optimization of friction stir welding process parameters for HDPE sheets using satisfaction function approach,” Indian J. Eng. Mater. Sci., vol. 31, no. 1, pp. 58–66, 2024, doi: 10.56042/ijems.v31i1.561.
[6] P. Asadi, M. R. M. Aliha, M. Akbari, D. M. Imani, and F. Berto, “Multivariate optimization of mechanical and microstructural properties of welded joints by FSW method,” Eng. Fail. Anal., vol. 140, p. 106528, 2022, doi: 10.1016/j.engfailanal.2022.106528.
[7] M. Rezaee Hajideh, M. Farahani, S. A. D. Alavi, and N. Molla Ramezani, “Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets,” J. Manuf. Process., vol. 26, pp. 269–279, 2017, doi: 10.1016/j.jmapro.2017.02.018.
[8] Mustafa Kemal Bilici, “Investigation of friction stir spot welding of high density polyethylene and polypropylene sheets,” J. Elastomers Plast., vol. 53, no. 7, pp. 922–940, Mar. 2021, doi: 10.1177/00952443211001526.
[9] A. A. E. Sidhom, S. A. R. Naga, and A. M. Kamal, “Friction stir spot welding of similar and dissimilar high density polyethylene and polypropylene sheets,” Adv. Ind. Manuf. Eng., vol. 4, p. 100076, 2022, doi: 10.1016/j.aime.2022.100076.
[10] N. Ardiyansyah, T. Suwanda, F. A. K. Yudha, and A. Purnama, “Effect of Feed Rate on Shear Strength and Macrostructure of Friction Stir Welding Dissimilar High Density Polyethylene-Polypropylene Joint,” J. Polimesin, vol. 22, no. 4, pp. 416–419, 2024, doi: 10.30811/jpl.v22i4.5285.
[11] X. Meng, Y. Huang, J. Cao, J. Shen, and J. F. dos Santos, “Recent progress on control strategies for inherent issues in friction stir welding,” Prog. Mater. Sci., vol. 115, p. 100706, 2021, doi: https://doi.org/10.1016/j.pmatsci.2020.100706.
[12] R. Ramadhani, F. B. Darsono, A. Bahatmaka, Kriswanto, T. O. Prasdika, and S. B. Azara, “Characteristics of Pin Profile Variations in Friction Stir Welding (FSW) Joints of High Density Polyethylene (HDPE) And Polypropylene (PP) on Mechanical Properties,” VANOS J. Mech. Eng. Educ., vol. 10, no. 1, pp. 128–142, 2025, doi: 10.30870/vanos.v10i1.32501.
[13] B. Ahmad, F. Almaskari, J. Sheikh-Ahmad, S. Deveci, and K. Khan, “Thermomechanical Modeling of Material Flow and Weld Quality in the Friction Stir Welding of High-Density Polyethylene,” Polymers, vol. 15. p. 3230, 2023. doi: 10.3390/polym15153230.
[14] S. H. Iftikhar, A.-H. I. Mourad, J. Sheikh-Ahmad, F. Almaskari, and S. Vincent, “A Comprehensive Review on Optimal Welding Conditions for Friction Stir Welding of Thermoplastic Polymers and Their Composites,” Polymers, vol. 13. p. 1208, 2021. doi: 10.3390/polym13081208.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Sibro Malisi, Febri Budi Darsono, Kriswanto, Abu Faqih Alkafi, Muhammad Nur Rochim, Fahmi Irsad Masruhan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

