Design of Handoff Communication Sequence Architecture in LoRa Networks
DOI:
https://doi.org/10.32493/pjte.v9i1.51408Keywords:
Handoff, LoRa, LoRaWAN, RSSI, IoTAbstract
Technological advances have driven the development of IoT-based object tracking systems, where LoRa is an ideal wireless technology due to its long range and low power consumption. Challenges in implementing LoRaWAN, particularly its role in the handoff process between gateways that can disrupt communication, can be overcome by developing a more efficient handoff method. For this reason, this study presents the design of Handoff communication for the LoRa Network. We use two gateways and one transmitter node. The gateway node consists of a LoRa module and an ESP32, while the Transmitter consists of a LoRa module, an Arduino Nano, and a GPS sensor. The RSSI parameter is a determining factor in transferring connectivity paths from GW A or GW B, as it provides an RSSI threshold value of -100 dBm. We successfully designed handoff communication at each Node and conducted a mini-test. The test results show that LoRa can implement handoff techniques at a distance of 0-500 meters. This indicates that the node is in closer range to GW A. The RSSI value of GW1 is in the range of -52 dBm to -98 dBm, while the RSSI of GW2 is in a much weaker range, which is around -120 dBm to -100 dBm. As the distance increases, the RSSI value of GW1 shows a significant decrease, while the RSSI of GW B actually increases. At a distance of approximately 250 meters, there is an intersection point between the RSSI values of the two gateways, marking the optimal handoff point. Thus, this system is able to select the best gateway, provide redundancy, check gateway availability before handoff, and handle handoff failures, thereby improving the efficiency and effectiveness of data delivery.
References
[1] A. Stateczny, K. Gierlowski, and M. Hoeft, “Wireless Local Area Network Technologies as Communication Solutions for Unmanned Surface Vehicles,” Sensors, vol. 22, no. 2. p. 655, 2022. doi: 10.3390/s22020655.
[2] V.-D. Gavra and O. A. Pop, “Usage of ZigBee and LoRa wireless technologies in IoT systems,” in 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), 2020, pp. 221–224. doi: 10.1109/SIITME50350.2020.9292150.
[3] I. P. Manalu, M. T. M. Sigiro, F. Simatupang, A. A. P. Manik, N. G. A. Sitohang, and G. Pardede, “Multihop Data Transmission Using LoRa Technology,” Pist. J. Tech. Eng., vol. 8, no. 2, pp. 71–83, May 2025.
[4] V. S. Gloria Polly, A. Manalu, K. T. Simbolon, and I. P. Manalu, “LoRa-based IoT Device for Water Quality Monitoring (Case Study: Lake Toba),” Pist. J. Tech. Eng., vol. 7, no. 2, pp. 75–81, Mar. 2024, doi: 10.32493/pjte.v7i2.35854.
[5] I. P. Manalu, S. M. Silalahi, G. I. Wowiling, M. M. T. Sigiro, R. P. Zalukhu, and P. K. Nababan, “Lora Communication Design and Performance Test (Case Study: Air Quality Monitoring System),” in 2023 International Conference of Computer Science and Information Technology (ICOSNIKOM), 2023, pp. 1–6. doi: 10.1109/ICoSNIKOM60230.2023.10364454.
[6] I. P. Manalu, F. Naibaho, E. S. L. Siahaan, and H. Hadi, “Analisa Kinerja LoRa di Bidang Pertanian di Desa Sitoluama, Toba,” Pist. J. Tech. Eng., vol. 6, no. 2, pp. 29–34, Feb. 2023, doi: 10.32493/pjte.v6i2.28473.
[7] I. P. Manalu, S. M. Silalahi, G. I. Wowiling, M. M. T. Sigiro, E. S. Sinambela, and F. Simatupang, “Performance Analysis of LoRa in IoT Application of Suburban Area,” in 2023 29th International Conference on Telecommunications (ICT), 2023, pp. 1–4. doi: 10.1109/ICT60153.2023.10374037.
[8] Noprianto, H. E. Dien, M. H. Ratsanjani, and M. A. Hendrawan, “Analysis of LoRa with LoRaWAN Technology Indoors in Polytechnic of Malang Environment,” Sist. J. Sist. Inf., vol. 13, no. 2, pp. 698–712, Mar. 2024, doi: 10.32520/stmsi.v13i2.3884.
[9] G. Czeczot, I. Rojek, and D. Mikołajewski, “Analysis of Cyber Security Aspects of Data Transmission in Large-Scale Networks Based on the LoRaWAN Protocol Intended for Monitoring Critical Infrastructure Sensors,” Electronics, vol. 12, no. 11. p. 2503, 2023. doi: 10.3390/electronics12112503.
[10] M. M. M. Zabidi, M. T. A. Rahman, A. Rahman, H. A. Munir, A. H. Adom, and A. F. A. Hamid, “Moving Cell Array Prediction for LORAWAN-Handover Based On Received Signal Strength Indicator (RSSI) Algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 705, no. 1, p. 12015, 2019, doi: 10.1088/1757-899X/705/1/012015.
[11] Z. A. Tan et al., “Analysis on LoRa RSSI in Urban, Suburban, and Rural Area for Handover Signal Strength-Based Algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 705, no. 1, p. 12012, 2019, doi: 10.1088/1757-899X/705/1/012012.
[12] W. D. Paredes, H. Kaushal, I. Vakilinia, and Z. Prodanoff, “LoRa Technology in Flying Ad Hoc Networks: A Survey of Challenges and Open Issues,” Sensors, vol. 23, no. 5. p. 2403, 2023. doi: 10.3390/s23052403.
[13] K. Z. Islam, D. Murray, D. Diepeveen, M. G. K. Jones, and F. Sohel, “LoRa-based outdoor localization and tracking using unsupervised symbolization,” Internet of Things, vol. 25, p. 101016, 2024, doi: 10.1016/j.iot.2023.101016.
[14] S. N. Syed Taha, M. S. Abu Talip, M. Mohamad, Z. H. Azizul Hasan, and T. F. Tengku Mohmed Noor Izam, “Evaluation of LoRa Network Performance for Water Quality Monitoring Systems,” Applied Sciences, vol. 14, no. 16. p. 7136, 2024. doi: 10.3390/app14167136.
[15] E. Otsetova-Dudin, “Handoff in Various Mobile Network Technologies,” Transp. Commun., vol. 7, no. 2, pp. 28–32, 2019, doi: 10.26552/tac.C.2019.2.6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Istas Pratomo Manalu, Frengki Simatupang, Eka Stephani Sinambela, Marojohan Mula Timbul Sigiro, Gerry Italiano Wowiling, Sari Muthia Silalahi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

