A Systematic Review on the Acoustic Performance of Nanocellulose-Modified Natural Fibers for Sound Insulation and Absorption Applications

Authors

  • Muchlisinalahuddin Mechanical Engineering Department, Faculty of Engineering, Universitas Andalas, Kampus Limau Manis, Padang, 25163
  • Meifal Rusli Mechanical Engineering Department, Faculty of Engineering, Universitas Andalas, Kampus Limau Manis, Padang, 25163, and Research Collaboration Center for Nanocellulose, BRIN-Universitas Andalas, Kampus Limau Manis, Padang, 25163
  • Hendery Dahlan Mechanical Engineering Department, Faculty of Engineering, Universitas Andalas, Kampus Limau Manis, Padang, 25163, and Research Collaboration Center for Nanocellulose, BRIN-Universitas Andalas, Kampus Limau Manis, Padang, 25163
  • Melbi Mahardika Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong, 16912

DOI:

https://doi.org/10.32493/pjte.v9i1.51526

Keywords:

Nanocellulose, Acoustics, Natural Fibers, Biodegradable, Soundproofing

Abstract

Noise pollution has become an increasingly concerning environmental issue, driving the development of sustainable acoustic materials as alternatives to conventional synthetic materials. This research conducts a systematic literature review on the acoustic effectiveness of natural fiber-based nanocellulose in sound isolation and absorption applications. The research method employs a qualitative approach with a comprehensive analysis of scientific publications from Scopus, Web of Science, ScienceDirect, and Google Scholar databases over the past ten years. The review results indicate that modification of natural fibers such as coconut coir, hemp fiber, banana pseudostem, and rice straw with nanocellulose at a concentration of 1-1.5% w/v is capable of improve sound absorption coefficients up to 0.7-0.9 in the 500-2000 Hz frequency range, comparable to synthetic materials such as fiberglass and mineral wool. This material demonstrates advantages in terms of dimensional stability improvement of 35-40%, lightweight density (150-300 kg/m³), balanced acoustic characteristics across a broad frequency spectrum, and biodegradable properties providing minimal environmental impact. The potential applications of this material are extensive in construction, automotive, and acoustic industries, with noise reduction capabilities of up to 8-12 dB. Despite facing challenges in raw material variability and production scalability, natural fiber and nanocellulose-based acoustic materials have promising prospects as sustainable solutions to global noise pollution problems with competitive performance against conventional materials.

References

[1] A. K. N. N. Fauziah, S. Aritonang, and R. Murniati, “Kajian Review Aplikasi Serat Sisal (Sisal Fiber) Sebagai Alternatif Komposit Polimer,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 7, no. 2, pp. 304–309, 2024, doi: 10.30596/rmme.v7i2.17364.

[2] Muchlisinalahuddin, H. Dahlan, M. Mahardika, and M. Rusli, “Cellulose-based Material for Sound Absorption And Its Application – A Short Review,” BIO Web Conf., vol. 77, p. 1003, 2023, doi: 10.1051/bioconf/20237701003.

[3] I. K. Suarsana and I. G. A. Kasmawan, “Perlakuan Serat Pandan Bali (Cordyline Australis) Sebagai Bahan Penguat Komposit Untuk Peredam Kebisingan Suara Dalam Ruang Gedung,” Pros. Semin. Nas. Sains dan Teknol., vol. 9, no. 1, pp. 78–84, 2024.

[4] D. Kartika, Mursal, and Z. Djalil, “Desain Komposit Sandwich Akustik Dari Beton Busa Dan Serat Sawit,” Serambi Konstr., vol. 6, no. 2, pp. 92–101, 2024, doi: 10.32672/konstruktivis.v6i2.8020.

[5] M. Mohammadi, M. R. Ishak, M. T. H. Sultan, and E. S. Zainudin, “A Comprehensive Review of Factors Influencing the Sound Absorption Properties of Micro-Perforated Panel Structures,” J. Vib. Eng. Technol., vol. 13, no. 5, p. 319, 2025, doi: 10.1007/s42417-025-01849-y.

[6] M. Ardan, N. Siregar, and N. Mahda, “Pembuatan Dinding Beton Ringan Akustik dengan Pemanfaatan Limbah Serat Serabut Kelapa (Cocofiber),” J. Tek. Sipil Inst. Teknol. Padang, vol. 7, no. 2, pp. 73–77, 2020, doi: 10.21063/jts.2020.V702.04.

[7] Sahara and A. Kusmiran, “Pengembangan Komposit Panel Akustik Berbahan Dasar Biji dan Kulit Kapuk Randu Untuk Meningkatkan Koefisien Absorbsi Bahan,” Teknosains Media Inf. Sains dan Teknol., vol. 15, no. 2, pp. 234–244, 2021, doi: 10.24252/teknosains.v15i2.20176.

[8] S. Ekbatani, P. Rattanawongkun, S. Klayya, D. G. Papageorgiou, N. Soykeabkaew, and H. Zhang, “Hierarchical Natural Fibre Composites Based on Cellulose Nanocrystal-Modified Luffa Structures for Binderless Acoustic Panels,” Polymers, vol. 17, no. 3. p. 281, 2025. doi: 10.3390/polym17030281.

[9] N. A. Syabani and S. Aritonang, “Analisis Sifat Serat Tandan Kosong Kelapa Sawit Sebagai Material Akustik : Jurnal Review,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 8, no. 1, pp. 122–128, 2025, doi: 10.30596/rmme.v8i1.21750.

[10] R. Aldania and Suparno, “Determination of Sound Absorption and Water Absorption by Composite Boards Made from Egg Cardboard,” J. Penelit. Pendidik. IPA, vol. 10, no. 4, pp. 1801–1808, Apr. 2024, doi: 10.29303/jppipa.v10i4.2830.

[11] T. Hassan et al., “Factors Affecting Acoustic Properties of Natural-Fiber-Based Materials and Composites: A Review,” Textiles, vol. 1, no. 1. pp. 55–85, 2021. doi: 10.3390/textiles1010005.

[12] N. W. Rahmadhani, D. Wahyuni, and A. Asri, “Karakteristik Daya Serap Bunyi Komposit Akustik Berbahan Pelepah Pisang (Musa paradisiaca) Berdasarkan Variasi Komposisi,” Newton-Maxwell J. Phys., vol. 6, no. 1, pp. 1–9, Apr. 2025, doi: 10.33369/nmj.v6i1.37168.

[13] R. Mahdani, H. Risnafitri, and Mardiaton, “Exploring the Potential Applications of Blockchain Technology in Accounting Practice: A Systematic Literature Review,” J. Din. Akunt. dan Bisnis, vol. 11, no. 1, pp. 15–32, 2024, doi: 10.24815/jdab.v11i1.33476.

[14] M. Noer and A. Wibowo, “Evaluating Industrial Areas with Spatial Multicriteria Analysis (SMCA),” Indones. J. Earth Sci., vol. 4, no. 1, p. A845, Feb. 2024, doi: 10.52562/injoes.2024.845.

[15] S. Samsuri, N. N. Misman, A. Borhan, W. Z. N. Yahya, and W. N. A. Wan Osman, “Power Plant Tour: From Physical Field Trip to Virtual Reality,” J. Penelit. dan Pengkaj. Ilmu Pendidik. e-Saintika, vol. 8, no. 3, pp. 352–372, Nov. 2024, doi: 10.36312/e-saintika.v8i3.2294.

[16] E. T. Sangbara, H. P. L. Tampubolon, F. Mandalurang, M. C. Muaja, R. Pairunan, and A. D. Wuntu, “Isolasi Nanoselulosa Pelepah Aren ( Arenga pinnata Merr.) untuk Menurunkan Kandungan Sianida dalam Limbah Tambang Emas Rakyat Sulawesi Utara,” Chem. Prog., vol. 16, no. 2, pp. 96–105, Nov. 2023, doi: 10.35799/cp.16.2.2023.52459.

[17] I. Mubarok and E. Purwanda, “Business Feasibility Study of the Production of a Simple Digital Distance Measuring Device Based on a Microcontroller,” J. Ilm. Ekon. Glob. Masa Kini, vol. 16, no. 1, pp. 25–30, Jan. 2025, doi: 10.36982/jiegmk.v16i1.5270.

[18] V. A. Tran et al., “Nanomaterial for Adjuvants Vaccine: Practical Applications and Prospects,” Indones. J. Chem., vol. 24, no. 1, pp. 284–302, Feb. 2024, doi: 10.22146/ijc.87940.

[19] F. Nursari, F. Fadhilaturrahmah, and S. Yuningsih, “Potential Application of The Zero Waste Fashion Method to Optimize Fabric Usage,” J. Ilmu Lingkung., vol. 23, no. 1, pp. 124–132, Jan. 2025, doi: 10.14710/jil.23.1.124-132.

[20] F. F. Hanum, A. Rahayu, N. A. Z. Amrillah, and Yoga Nawaki Helmi Mustafa, “The Utilization and Extraction Method of Nanocellulose: A Review,” Sains Nat. J. Biol. Chem., vol. 13, no. 3, pp. 107–114, Jul. 2023, doi: 10.31938/jsn.v13i3.565.

[21] M. Olivares-Marín, S. Román, V. Gómez Escobar, C. Moreno González, A. Chaves-Zapata, and B. Ledesma, “Thermal performance and sound absorption capability of water hyacinth stems-based materials,” J. Clean. Prod., vol. 425, p. 138903, 2023, doi: 10.1016/j.jclepro.2023.138903.

[22] D. A. Septiawati and S. N. Aulia, “Analyzing the Acoustic Behavior of Gamelan Music Performance in Different Environments,” Interlude Indones. J. Music Res. Dev. Technol., vol. 2, no. 2, pp. 58–69, 2023, doi: 10.17509/interlude.v2i2.70119.

[23] Sunardi, R. Wahyudi, S. Ula, Haryadi, and A. A. Alhamidi, “Evaluation of Acoustic and Physical Properties of Composite Boards from Sugarcane Bagasse and Oil Palm Waste,” J. Polimesin, vol. 23, no. 2, pp. 248–252, 2025, doi: 10.30811/jpl.v23i2.6618.

[24] S. A. Putri, R. Febrianti, and Sunardi, “Potensi Nanoselulosa untuk Agen Slow Release Bahan Alam: Review,” J. Jejaring Mat. dan Sains, vol. 2, no. 2, pp. 56–60, Dec. 2020, doi: 10.36873/jjms.2020.v2.i2.406.

[25] Muflikhah, W. Z. Lubis, Mujamilah, M. Azizah, and R. P. Caesariyant, “The Effect of Conventional and Sonochemical Synthesis Methods on Gd2O3 Nanoparticles Properties,” J. Sains Mater. Indones., vol. 24, no. 1, pp. 45–50, May 2022.

[26] R. Negoro, A. Rusilowati, and B. Subali, “Contextual Technology-Based Physics Module on Sound Absorption: Improving Critical Thinking Skills and Scientific Attitudes of Indonesian High School Students,” KONSTAN (Jurnal Fis. dan Pendidik. Fis., vol. 10, no. 01, pp. 1–13, May 2025, doi: 10.20414/konstan.v10i01.647.

[27] C. J. A. Hakim, M. Jonathan, and H. C. Indrani, “Assessment of Indoor Acoustic Performance: Impact of Interior Materials on Classrooms in Higher Education Buildings,” Int. J. Sustain. Dev. Futur. Soc., vol. 2, no. 2, pp. 84–98, Nov. 2024, doi: 10.62157/ijsdfs.v2i2.76.

[28] S. Amirudin, Tamrin, and S. Rejeki, “Metode Sintesis Nanoselulosa: Kajian Pustaka,” J. Ris. Pangan, vol. 2, no. 1, pp. 89–96, 2024.

[29] S. D. Pramesti and S. M. Aryani, “The potential of cassava peel as acoustic panel material: A sustainable innovation in green engineering,” J. Innov. Mater. Energy, Sustain. Eng., vol. 2, no. 2, pp. 154–163, Jan. 2025, doi: 10.61511/jimese.v2i2.2025.1397.

[30] M. F. Datuela, Rahmayanti, W. Saputra, N. Mutmainnah, and Syafriani, “Perbandingan Material Akustik Dalam Menyerap Bunyi,” JAMBURA J. Archit., vol. 5, no. 1, pp. 92–96, 2023, doi: 10.37905/jjoa.v5i1.19773.

[31] H. Meziane et al., “Nanocellulose fibers: A Review of Preparation Methods, Characterization Techniques, and Reinforcement Applications,” Moroccan J. Chem., vol. 12, no. 1, pp. 305–343, 2024, doi: 10.48317/IMIST.PRSM/morjchem-v12i1.44573.

[32] R. Wicaksono, K. Syamsu, I. Yuliasih, and M. Nasir, “Karakteristik Nanoserat Selulosa dari Ampas Tapioka dan Aplikasinya Sebagai Penguat Film Tapioka,” J. Teknol. Ind. Pertan., vol. 23, no. 1, pp. 38–45, Nov. 2013.

[33] R. N. Hidayati, D. C. Wulan, A. Fauziah, N. Rahayu, and B. Subali, “Potential of Soundproof Wallpaper Based on Indigenous Materials,” J. Sci. Indones., vol. 1, no. 2, pp. 131–146, 2015, doi: 10.15294/jsi.v1i2.32609.

[34] M. A. Rahim and E. M. Samsudin, “Sound Absorption Performance of Ink-Tube Waste as Absorber,” Recent Trends Civ. Eng. Built Environ., vol. 2, no. 1, pp. 87–93, 2021.

[35] B. R. Kusumah, I. Jaya, H. M. Manik, and Susilohadi, “Engineering of Acoustic Technology for Underwater Positioning Object,” J. Ilmu dan Teknol. Kelaut. Trop., vol. 10, no. 3, pp. 629–637, Dec. 2018, doi: 10.29244/jitkt.v10i3.21456.

[36] A. R. Nafisah, D. Rahmawati, and F. M. Tarmidzi, “Synthesis of Cellulose Nanofiber from Palm Oil Empty Fruit Bunches Using Acid Hydrolysis Method,” Indones. J. Chem. Sci., vol. 11, no. 3, pp. 233–240, Nov. 2022, doi: 10.15294/IJCS.V11I3.55936.

[37] M. A. Mahadzir and H. A. Bakar, “A Review on Sound Absorption Properties Using Natural Fibers,” Recent Trends Civ. Eng. Built Environ., vol. 2, no. 1, pp. 815–823, 2021.

[38] P. Chattaviriya, D. Supawantanakul, R. Sangsirimongkolying, and G. Sua-Iam, “Banana Fibers as a Sustainable Acoustic Absorbing Materials: A Review,” Trends Sci., vol. 19, no. 11, p. 4498, May 2022, doi: 10.48048/tis.2022.4498.

[39] C. Ma, H. Liao, M. Li, and Q. Tao, “Investigation on Aerodynamic Behavior of Sutong Bridge During Erection Stage,” in The Seventh Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan, 2009, pp. 1–8.

[40] N. Hartati, E. Kurniawan, M. Trisna, and I. Noviarni, “Isolasi, Karakterisasi, Dan Aplikasi Nanokristal Selulosa : Review,” JSSIT J. Sains dan Sains Terap., vol. 1, no. 2, pp. 29–38, Aug. 2023, doi: 10.30631/jssit.v1i2.19.

Downloads

Published

2025-08-10

How to Cite

Muchlisinalahuddin, Rusli, M., Dahlan, H., & Mahardika, M. (2025). A Systematic Review on the Acoustic Performance of Nanocellulose-Modified Natural Fibers for Sound Insulation and Absorption Applications. Piston: Journal of Technical Engineering, 9(1), 30–39. https://doi.org/10.32493/pjte.v9i1.51526

Issue

Section

Articles