Design of Helical Type Steam Generator for Experimental Power Reactor – Helium Side

Authors

  • Sunny Ineza Putri Mechanical Engineering, Universitas Riau, Kampus Bina Widya KM. 12,5, Pekanbaru, Riau 28293
  • Mohammad Subekti Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN), Jl. Lebak Bulus Raya No.49, RT.3/RW.2, South Jakarta, Jakarta 12440
  • Awaludin Martin Mechanical Engineering, Universitas Riau, Kampus Bina Widya KM. 12,5, Pekanbaru, Riau 28293
  • Brian Agung Cahyo P Mechanical Engineering, Universitas Riau, Kampus Bina Widya KM. 12,5, Pekanbaru, Riau 28293
  • Jheri Hermanto Mechanical Engineering, Universitas Riau, Kampus Bina Widya KM. 12,5, Pekanbaru, Riau 28293
  • Ansor Salim Siregar Mechanical Engineering, Politeknik Negeri Banyuwangi, Jl. Raya Jember No.KM13, Banyuwangi, East Java, 68461

DOI:

https://doi.org/10.32493/pjte.v9i1.51645

Keywords:

HTGR, RDE, Steam Generator, Helium

Abstract

Previous research has not analyzed the helium temperature distribution in the RDE steam generator shell. This study aims to fill that gap by analyzing these thermal characteristics with empirical calculations and Ansys Fluent simulations. The validity of the RDE steam generator design is reaffirmed, having been successfully analyzed from both the water-flow perspective in previous research and the helium-side perspective in the present study. The analytical methods used herein showed strong consistency, with empirical and numerical simulation results differing by less than 10% across all parameters. Although the calculated shell height of 5.73 m exceeds the RDE design's 4.97 m, the overall design's validity is confirmed.

References

[1] A. Waluyo and A. Khakim, “HTGR Thermohydraulic Study on Steady-State Conditions using ANSYS FLUENT,” in 2020 Annual Nuclear Safety Seminar Proceeding: Innovations to Support Nuclear Safety and Security for Advanced Human Resources and Excellent Indonesia, Jakarta: Nuclear Energy Regulatory Agency, Oct. 2020.

[2] H. Li, “A Brief Review of the Development of High Temperature Gas Cooled Reactor,” IOP Conf. Ser. Earth Environ. Sci., vol. 631, no. 1, p. 12080, 2021, doi: 10.1088/1755-1315/631/1/012080.

[3] Y. Zheng, B. Xia, Z. Chen, H. Zhang, and J. Sun, “Preliminary Study on HTR-10 Operating in Higher Outlet Temperature,” J. Phys. Conf. Ser., vol. 2048, no. 1, p. 12035, 2021, doi: 10.1088/1742-6596/2048/1/012035.

[4] M. P. Da̧browski et al., “Concept of the polish high temperature gas-cooled reactor HTGR-POLA,” Nucl. Eng. Des., vol. 424, p. 113197, 2024, doi: 10.1016/j.nucengdes.2024.113197.

[5] G. R. Sunaryo, S. Bakhri, M. Subekti, T. Setiadipura, and D. S. Wisnubroto, “RDE Design Strategy for Indonesia Experimental NPP,” J. Phys. Conf. Ser., vol. 2048, no. 1, p. 12002, 2021, doi: 10.1088/1742-6596/2048/1/012002.

[6] D. S. Wisnubroto, G. R. Sunaryo, and Y. S. Budi Susilo, “Indonesia’s RDE program: A multifaceted approach to nuclear energy development encompassing human Resource building, public acceptance, and technological innovation,” Nucl. Eng. Technol., vol. 57, no. 8, p. 103560, 2025, doi: 10.1016/j.net.2025.103560.

[7] X. Li, W. Gao, Y. Su, and X. Wu, “Thermal analysis of HTGR helical tube once through steam generators using 1D and 2D methods,” Nucl. Eng. Des., vol. 355, p. 110352, 2019, doi: https://doi.org/10.1016/j.nucengdes.2019.110352.

[8] W. Afsar, J. Cai, and S. S. Cui, “Thermo-Fluid-Solid Coupling Analysis in the Steam Generator of a High Temperature Gas Cooled Reactor,” in Proceedings of the International Workshop on Materials, Chemistry and Engineering - Volume 1: IWMCE, INSTICC: SciTePress, 2018, pp. 236–242. doi: 10.5220/0007437002360242.

[9] S. I. Putri, P. S. Darmanto, and M. Subekti, “Design of Helical Type Steam Generator for Experimental Power Reactor,” J. Teknol. Reakt. Nukl. Tri Dasa Mega, vol. 25, no. 1, pp. 1–8, Mar. 2023, doi: 10.55981/tdm.2023.6656.

[10] B. W. Riyandwita et al., “Analytical Design of Helical Coil Steam Generator for Hot Temperature Gas Reactor,” J. Phys. Conf. Ser., vol. 1198, no. 4, p. 42014, 2019, doi: 10.1088/1742-6596/1198/4/042014.

[11] S. Kakaç, H. Liu, and A. Pramuanjaroenkij, Heat Exchangers: Selection, Rating, and Thermal Design, 2nd Edition. Boca Raton: CRC Press, 2002. doi: 10.1201/9781420053746.

[12] M. Asghari, A. M. Fathollahi-Fard, S. M. J. Mirzapour Al-e-hashem, and M. A. Dulebenets, “Transformation and Linearization Techniques in Optimization: A State-of-the-Art Survey,” Mathematics, vol. 10, no. 2. p. 283, 2022. doi: 10.3390/math10020283.

[13] U. E. Inyang and I. J. Uwa, “Heat Transfer in Helical Coil Heat Exchanger,” Adv. Chem. Eng. Sci., vol. 12, no. 1, pp. 26–39, 2022, doi: 10.4236/aces.2022.121003.

Downloads

Published

2025-08-10

How to Cite

Putri, S. I., Subekti, M., Martin, A., P, B. A. C., Hermanto, J., & Siregar, A. S. (2025). Design of Helical Type Steam Generator for Experimental Power Reactor – Helium Side. Piston: Journal of Technical Engineering, 9(1), 54–60. https://doi.org/10.32493/pjte.v9i1.51645

Issue

Section

Articles