Synthesis and Characterization of Dual-doped (Al, Co) ZnO Nanofibers for Sustainable Piezoelectric Nanogenerator Applications

Authors

  • Ade Irvan Tauvana Department of Manufacturing Engineering Technology, Politeknik Enjinering Indorama
  • Lukman Nulhakim Department of Manufacturing Engineering Technology, Politeknik Enjinering Indorama
  • Elsa Nurfadillah Department of Manufacturing Engineering Technology, Politeknik Enjinering Indorama

Keywords:

Electrospun ZnO Nanofibers, SEM–EDX, XRD, Crystallite Size, Microstrain, Piezoelectric Materials

Abstract

This study reports the structural and morphological enhancement of aluminum (Al) and cobalt (Co) co-doped ZnO nanofibers synthesized via electrospinning for piezoelectric applications. The morphology and elemental composition were systematically analyzed using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (SEM–EDX), while crystallographic properties were evaluated by X-ray Diffraction (XRD). SEM analysis revealed that the electrospun Al–Co co-doped ZnO nanofibers formed a highly interconnected and porous fibrous network with a uniform diameter distribution and negligible agglomeration, exhibiting diameters of 100–200 nm. EDX results confirmed the successful incorporation of Al and Co dopants into the ZnO matrix without detectable impurities. XRD patterns indicated a well-defined hexagonal wurtzite crystal structure with high crystallinity and a pronounced preferred orientation. The crystallite size, calculated using the Scherrer equation, ranges from 84 to 106 nm. The variation in crystallite size among different diffraction peaks is mainly attributed to differences in peak broadening (FWHM), which may indicate anisotropic crystallite growth and varying degrees of lattice orderingIn addition, the microstrain increased from 1.5 × 10⁻⁴ to 3.8 × 10⁻⁴, suggesting lattice distortion induced by Al³⁺ and Co²⁺ substitution. These findings demonstrate that Al–Co co-doped ZnO nanofibers possess favorable structural characteristics for advanced piezoelectric material development.

References

[1] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports Prog. Phys., vol. 72, no. 12, p. 126501, 2009, doi: https://doi.org/10.1088/0034-4885/72/12/126501.

[2] C. Jin, J. Zhou, Z. Wu, and J. X. J. Zhang, “Doped Zinc Oxide-Based Piezoelectric Devices for Energy Harvesting and Sensing,” Adv. Energy Sustain. Res., vol. 6, no. 9, p. 2500017, Sep. 2025, doi: https://doi.org/10.1002/aesr.202500017.

[3] Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, no. 5771, pp. 242–246, Apr. 2006, doi: https://doi.org/10.1126/science.1124005.

[4] N. Bhadwal, R. Ben Mrad, and K. Behdinan, “Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output,” Sensors, vol. 23, no. 8. p. 3859, 2023. doi: https://doi.org/10.3390/s23083859.

[5] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol., vol. 5, no. 5, pp. 366–373, May 2010, doi: https://doi.org/10.1038/nnano.2010.46.

[6] E. S. Nour et al., “Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate,” Nanoscale Res. Lett., vol. 11, no. 1, p. 156, 2016, doi: https://doi.org/10.1186/s11671-016-1373-1.

[7] H. Parangusan, D. Ponnamma, and M. A. A. Al-Maadeed, “Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators,” Sci. Rep., vol. 8, no. 1, p. 754, 2018, doi: https://doi.org/10.1038/s41598-017-19082-3.

[8] C. Klingshirn, “ZnO: material, physics and applications,” Chemphyschem, vol. 8, no. 6, pp. 782–803, Apr. 2007, doi: https://doi.org/10.1002/cphc.200700002.

[9] C. Jin et al., “Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films,” Sensors Actuators A Phys., vol. 305, p. 111912, 2020, doi: https://doi.org/10.1016/j.sna.2020.111912.

[10] S. Hajer et al., “Influence of (Co+Al) co−doping on structural, micro-structural, optical and electrical properties of nanostructured zinc oxide,” Ceram. Int., vol. 50, no. 21, Part C, pp. 44151–44164, 2024, doi: https://doi.org/10.1016/j.ceramint.2024.08.264.

[11] R. Saleh and N. F. Djaja, “Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 130, pp. 581–590, 2014, doi: https://doi.org/10.1016/j.saa.2014.03.089.

[12] C. Liu et al., “Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a Combination of Chemical Doping and Interfacial Modification,” J. Phys. Chem. C, vol. 120, no. 13, pp. 6971–6977, Apr. 2016, doi: https://doi.org/10.1021/acs.jpcc.6b00069.

[13] D. Subagiyo and Suyitno, “Enhancing Output Voltage of Piezoelectric-Based Nanogenerators Using Zinc Oxide Material Codoped with Aluminum and Cobalt,” IOP Conf. Ser. Mater. Sci. Eng., vol. 267, no. 1, p. 12037, 2017, doi: https://doi.org/10.1088/1757-899X/267/1/012037.

[14] S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers. World Scientific, 2005. doi: https://doi.org/10.1142/5894.

[15] X. Li et al., “From Fiber to Power: Recent Advances Toward Electrospun-Based Nanogenerators,” Adv. Funct. Mater., vol. 35, no. 13, p. 2418066, Mar. 2025, doi: https://doi.org/10.1002/adfm.202418066.

[16] T. Pirzada, S. A. Arvidson, C. D. Saquing, S. S. Shah, and S. A. Khan, “Hybrid Silica–PVA Nanofibers via Sol–Gel Electrospinning,” Langmuir, vol. 28, no. 13, pp. 5834–5844, Apr. 2012, doi: https://doi.org/10.1021/la300049j.

[17] A. Greiner and J. H. Wendorff, “Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers,” Angew. Chemie Int. Ed., vol. 46, no. 30, pp. 5670–5703, Jul. 2007, doi: https://doi.org/10.1002/anie.200604646.

[18] B. A. Chinnappan, M. Krishnaswamy, H. Xu, and M. E. Hoque, “Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters,” Polymers, vol. 14, no. 18. p. 3719, 2022. doi: https://doi.org/10.3390/polym14183719.

[19] J. Schindelin et al., “Fiji: an open-source platform for biological-image analysis,” Nat. Methods, vol. 9, no. 7, pp. 676–682, 2012, doi: https://doi.org/10.1038/nmeth.2019.

[20] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, pp. 671–675, 2012, doi: https://doi.org/10.1038/nmeth.2089.

[21] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed. United States: Pearson, 2014.

[22] P. Fakhri et al., “Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output,” RSC Adv., vol. 9, no. 18, pp. 10117–10123, 2019, doi: http://dx.doi.org/10.1039/C8RA10315A.

[23] C.-L. Hsu and K.-C. Chen, “Improving Piezoelectric Nanogenerator Comprises ZnO Nanowires by Bending the Flexible PET Substrate at Low Vibration Frequency,” J. Phys. Chem. C, vol. 116, no. 16, pp. 9351–9355, Apr. 2012, doi: 10.1021/jp301527y.

[24] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis. New York, NY: Springer, 2018. doi: http://doi.org/10.1007/978-1-4939-6676-9.

[25] A. R. West, Solid State Chemistry and its Applications, 2nd ed. Chichester: John Wiley & Sons, Ltd., 2014.

[26] Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, p. 41301, Aug. 2005, doi: https://doi.org/10.1063/1.1992666.

[27] A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev., vol. 56, no. 10, pp. 978–982, Nov. 1939, doi: https://doi.org/10.1103/PhysRev.56.978.

[28] Y. Qin, X. Wang, and Z. L. Wang, “Microfibre–nanowire hybrid structure for energy scavenging,” Nature, vol. 451, no. 7180, pp. 809–813, 2008, doi: https://doi.org/10.1038/nature06601.

Downloads

Published

2026-01-31

How to Cite

Tauvana, A. I., Nulhakim, L., & Nurfadillah, E. (2026). Synthesis and Characterization of Dual-doped (Al, Co) ZnO Nanofibers for Sustainable Piezoelectric Nanogenerator Applications. Piston: Journal of Technical Engineering, 9(2), 125–131. Retrieved from https://openjournal.unpam.ac.id/index.php/Piston/article/view/53435

Issue

Section

Articles