Performance Analysis of a Two-Stage Savonius Rotor Using Numerical Methods
Keywords:
Energy Conversion, POCREN, Vertical Axis Wind Turbine, Power Coefficient (Cp), Torque Coefficient (Ct), Two-Stage SavoniusAbstract
The POCREN system is a hybrid renewable energy device that integrates wind, solar, and water current energy sources to generate electrical power. The main objective of developing POCREN is to provide a sustainable electricity supply, particularly for floating fish farmers in coastal regions where the average wind speed ranges from 3 to 5 m/s. Currently, most floating cage farmers rely heavily on diesel engines to meet their electricity needs, which are costly and environmentally unsustainable. This study focuses on one of the key components of the POCREN system, namely a two-stage Savonius wind turbine, to evaluate its performance in power generation. The analysis was conducted numerically using ANSYS Fluent software. The results show that the maximum power coefficient (Cp) of the two-stage turbine was achieved at a wind speed of 5 m/s with a tip speed ratio (TSR) of 0.7, yielding a Cp value of 0.26. At a lower wind speed of 3 m/s, the maximum Cp reached 0.22 at the same TSR of 0.7. Pressure contour analysis indicates that the two-stage Savonius turbine can operate effectively at low wind speeds of approximately 3 m/s. The pressure distribution shows higher pressure on the concave side of the advancing blade compared to the convex side, generating torque that drives rotor rotation. This confirms that the two-stage configuration enhances torque continuity and enables stable operation under low wind conditions. Based on these findings, the two-stage Savonius turbine in the POCREN system is suitable for renewable energy applications in coastal environments, offering a promising alternative to reduce dependence on diesel-powered generators for floating fish farming activities.
References
[1] E. S. Hamid and B. S. Wibowo, “The impact of CO2 emission on health expenditure: lesson learned from ASEAN five countries,” IOP Conf. Ser. Earth Environ. Sci., vol. 1180, no. 1, p. 12044, 2023, doi: https://doi.org/10.1088/1755-1315/1180/1/012044.
[2] R. Sumiati, U. G. S. Dinata, and D. A. Saputra, “Enhancing savonius rotor performance with wavy pattren in the concave surface - A short review,” AIP Conf. Proc., vol. 3223, no. 1, p. 30013, Jan. 2025, doi: https://doi.org/10.1063/5.0243088.
[3] K. A. H. Al-Gburi, F. B. I. Alnaimi, B. A. Al-quraishi, E. Sann Tan, and M. M. Maseer, “A comparative study review: The performance of Savonius-type rotors,” Mater. Today Proc., vol. 57, pp. 343–349, 2022, doi: https://doi.org/10.1016/j.matpr.2021.09.226.
[4] A. Jebelli, N. Lotfi, M. Saeid Zare, and M. C. E. Yagoub, “A comprehensive review of effective parameters to improve the performance of the Savonius turbine using a computational model and comparison with practical results,” Water-Energy Nexus, vol. 7, pp. 266–274, Dec. 2024, doi: https://doi.org/10.1016/j.wen.2024.11.002.
[5] M. Al-Ghriybah, M. F. Zulkafli, D. H. Didane, and S. Mohd, “Review of the Recent Power Augmentation Techniques for the Savonius Wind Turbines,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 60, no. 1, pp. 71–84, Mar. 2024.
[6] P. M. Kumar, K. Sivalingam, S. Narasimalu, T.-C. Lim, S. Ramakrishna, and H. Wei, “A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines,” J. Power Energy Eng., vol. 7, no. 4, pp. 27–44, 2019, doi: https://doi.org/10.4236/jpee.2019.74002.
[7] J. V. Akwa, H. A. Vielmo, and A. P. Petry, “A review on the performance of Savonius wind turbines,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3054–3064, 2012, doi: https://doi.org/10.1016/j.rser.2012.02.056.
[8] L. Chen, J. Chen, and Z. Zhang, “Review of the Savonius rotor’s blade profile and its performance,” J. Renew. Sustain. Energy, vol. 10, no. 1, p. 13306, Jan. 2018, doi: https://doi.org/10.1063/1.5012024.
[9] R. Sumiati, “Pengujian turbin angin savonius tipe U tiga sudu di lokasi Pantai Air Tawar Padang,” J. Tek. Mesin, vol. 9, no. 1, pp. 26–32, 2012.
[10] N. Alom and U. K. Saha, “Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes,” J. Sol. Energy Eng., vol. 141, no. 3, p. 030801, Nov. 2018, doi: https://doi.org/10.1115/1.4041848.
[11] P. A. Setiawan, T. Yuwono, and W. A. Widodo, “Effect of a circular cylinder in front of advancing blade on the Savonius water turbine by using transient simulation,” Int. J. Mech. Mechatronics Eng., vol. 19, no. 1, pp. 151–159, 2019.
[12] W. Yahya, K. Ziming, W. Juan, M. S. Qurashi, M. Al-Nehari, and E. Salim, “Influence of tilt angle and the number of guide vane blades towards the Savonius rotor performance,” Energy Reports, vol. 7, pp. 3317–3327, 2021, doi: https://doi.org/10.1016/j.egyr.2021.05.053.
[13] C. R. Sonawane, Y. Sasar, M. Shaikh, Y. Kokande, M. Mustafa, and A. Pandey, “Numerical simulation of Savonius rotors used for low wind speed application,” Mater. Today Proc., vol. 49, pp. 1610–1616, 2022, doi: https://doi.org/10.1016/j.matpr.2021.07.420.
[14] N. Alom and U. K. Saha, “Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor,” J. Energy Resour. Technol., vol. 141, no. 5, p. 051201, Jan. 2019, doi: https://doi.org/10.1115/1.4041735.
[15] M. Al-Ghriybah, M. F. Zulkafli, D. H. Didane, and S. Mohd, “Performance of the Savonius Wind Rotor with Two Inner Blades at Low Tip Speed Ratio,” CFD Lett., vol. 12, no. 3, pp. 11–21, 2020, doi: https://doi.org/10.37934/cfdl.12.3.1121.
[16] R. Sumiati, U. G. S. Dinata, D. A. Saputra, and Y. D. Herlambang, “Enhancing Savonius Rotor Performance with Zigzag in Concave Surface-CFD Investigation,” CFD Lett., vol. 17, no. 5, pp. 101–114, 2025, doi: https://doi.org/10.37934/cfdl.17.2.100114.
[17] Y. S. Indartono, I. Farozan, and G. T. Fauzanullah, “Experimental Study into The Effect of Multi-staging and Check Valve Addition on The Performance of Savonius Wind Rotors with Modified-Bach Blade,” Int. J. Technol., vol. 16, no. 2, pp. 291–319, 2025, doi: https://doi.org/10.14716/ijtech.v16i2.6389.
[18] A. Kumar, R. P. Saini, G. Saini, and G. Dwivedi, “Effect of number of stages on the performance characteristics of modified Savonius hydrokinetic turbine,” Ocean Eng., vol. 217, p. 108090, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.108090.
[19] M. S. M. Halmy, D. H. Didane, L. O. Afolabi, and S. Al-Alimi, “Computational Fluid Dynamics (CFD) Study on the Effect of the Number of Blades on the Performance of Double-Stage Savonius Rotor,” CFD Lett., vol. 13, no. 4, pp. 1–10, Apr. 2021, doi: https://doi.org/10.37934/cfdl.13.4.110.
[20] M. Zemamou, A. Toumi, K. Mrigua, and M. Aggour, “Modified Design of Savonius Wind Turbine Blade for Performance Improvement,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 1, pp. 1432–1437, 2019, doi: http://doi.org/10.35940/ijitee.A4202.119119.
[21] X. Jin, Y. Wang, W. Ju, J. He, and S. Xie, “Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation,” Renew. Energy, vol. 115, pp. 41–53, 2018, doi: https://doi.org/10.1016/j.renene.2017.08.012.
[22] U. K. Patel, N. Alom, and U. K. Saha, “Aerodynamic analysis of a 2-stage elliptical-bladed Savonius wind rotor: Numerical simulation and experimental validation,” Int. J. Green Energy, vol. 21, no. 1, pp. 102–115, Jan. 2024, doi: https://doi.org/10.1080/15435075.2023.2194975.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Abdul Aziz, Hilfama Rama, M. Firash Al-Huda, Mirwan Zahndi, Ruzita Sumiati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

