Pengaruh Geometri dan Kuat Medan Permanen dari Magnet Permanen NdFeB Terhadap Output Generator Fluks Aksial
DOI:
https://doi.org/10.32493/pjte.v1i1.542Keywords:
generator, magnetic flux density, rotasi, voltageAbstract
Pada penelitian ini, telah dilakukan investigasi pengaruh bentuk geometri dan magnetik flux density terhadap output tegangan dari generator axial flux magnet permanen. Model dari generator axial didesain menggunakan sofware 3D Studio Max dan visual basic net express. Pada simulasi dan eksperimen digunakan magnet permanen NdFeB yang dibentuk circular dan rectangular dengan variasi magnetik flux density 0,5; 0,8; 1,1; 1,3 Tesla pada kecepatan rotasi sekitar 260 – 540 rpm. Dari hasil simulasi dan eksperimen ditunjukkan bahwa geometri magnet permanen sangat mempengaruhi dalam menghasilkan magnetik flux density maksimum. Hasil ini juga menunjukkan adanya korelasi antara output tegangan maksimum dengan magnetik fluk density maksimum. Semakin besar magnetik fluk density dan kecepatan rotor putar (rotasi) akan menghasilkan output tegangan yang semakin besar.
References
S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan, dan J. H. Lang, “Vibration-to- electric energy conversion,†IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 1, hal. 64–76, 2001.
C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T. S. Birch, dan R. B. Yates, “Development of an electromagnetic micro-generator,†IEE Proc. Circuit Device Syst., vol. 148, no. 6, 2001.
J. M. H. Lee, S. C. L. Yuen, W. J. Li, dan P. H.W. Leong, “Development of an AA size transducer with micro resonators,†Proc. ISCAS 2003, vol. 4, hal. 876–879, 2003.
P. Glynne-Jones, S. P. Beeby, dan N. M. White, “Toward a piezoelectric vibration-powered microgenerator,†IEE Proc. Sci. Meas. Technol., vol. 148, no. 2, 2001.
H. Polinder, F.F.A. van der Pijl, G.J. de Vilder, dan P. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,†IEEE Trans. Energy Conversion, vol. 21, hal. 725-733, 2006.
J. F. Gieras, R. J. Wang, dan M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, 2nd ed., Springer, 2008.
M. Sadeghierad, A. Darabi, H. Lesani, dan H. Monsef, “Rotor yoke thickness of coreless high speed axial- flux permanent magnet generator,†IEEE Trans. Magn., vol. 45, no. 4, hal. 2032-2037, 2009.
W. Fei dan P. C. K. Luk, “Design and performance analysis of a high-speed air-cored axial-flux permanent- magnet generator with circular magnets and coils,†Proc. IEEE int. Eletric Machines & Drives conf., hal. 1-10, 2009.
A. S. Holmes, G. Hong, dan K. R. Pullen, “Axial-flux permanent magnet machines for micro power generation,†J. Microelectromech. Syst., vol. 14, no. 1, hal. 54–62, 2005.
Das S, Arnold D P, Zana I, Park J-W, Allen M G dan Lang J H, “Microfabricated high-speed axial-flux multi-watt permanent-magnet generators: Part I. Modeling,†J. Microelectromech. Syst. (at press), 2006
Arnold D P, Das S, Zana I, Park J-W, Lang J H dan Allen M G, “Microfabricated high-speed axial-flux multi-watt permanent-magnet generators: Part II. Design, fabrication, and testing,†J. Microelectromech. Syst. (at press), 2006.
W. Fei dan P. C.K. Luk, “Torque Ripple Reduction of a Direct-Drive Permanent-Magnet Synchronous Machine by Material-Efficient Axial Pole Pairing,†IEEE Transaction on Industrial Electronics, vol. 59, no. 6, 2012.
N. N. Chen, S. L. Ho, dan W. N. Fu, “Optimization of permanent magnet surface shapes of electric motors for minimization of cogging torque using FEM,†IEEE Trans. Magnetics, vol. 46, no. 6, hal. 2478–2481, 2010.
D. K. Woo, J. H. Choi, M. Ali, dan H. K. Jung, A Novel Multimodal Optimization Algorithm Applied to Electromagnetic
L. D. Ferraro, R. Terrigi, dan F. G. Capponi, “Coil and Magnet Shape Optimization of an Ironless AFPM Machine by Means of 3D FEA,†IEEE., 2007.
M. Aydin, S. Huang, dan T. A. Lipo, Torus Concept Machine: Pre–Prototyping Design Assesment for Two Major Topologies, University of Wisconsin-Madison College of Enginering. 2004.