Efek Air Gap pada Rancang Bangun dan Uji Performa Generator Listrik Fluks Aksial Berbasis Magnet Permanen NdFeB
DOI:
https://doi.org/10.32493/pjte.v1i1.543Keywords:
air gap, generator listrik fluks aksial, ouput tegangan, magnet NdFeBAbstract
Dalam penelitian ini telah dianalisis efek air gap terhadap performa generator listrik tipe fluks aksial berbasis magnet permanen NdFeB. Analisis performa dilakukan dengan mengukur output tegangan generator listrik fluks aksial terhadap ukuran air gap dan kecepatan putar rotor. Air gap antara stator dan rotor divariasikan dari 7 sampai 20 mm. Dari hasil eksperimen, peningkatan remanansi magnet berbanding lurus terhadap peningkatan output tegangan. Sebaliknya, peningkatan ukuran air gap menurunkan tegangan output secara linier. Hal ini disebabkan oleh adanya penurunan magnetik flux density secara exponensial. Pada ukuran air gap 7 mm dan kecepatan rotor 1500 rpm, dihasilkan output tegangan maksimal untuk Br = 0,2 dan 1,3 Tesla berturut-turut sebesar 10,4 dan 67,7 volt.
References
Muljadi, P. Sardjono, dan Suprapedi, “Preparation and characterization of 5 wt. persen epoxy resin bonded magnet NdFeB for micro generator application,â€Energy Procedia, vol. 68, hal.282-287, 2015.
Irasari, Pudji, dan N. Idayanti, “Aplikasi Magnet Permanen BaFe12O19 dan NdFeB Pada Generator Magnet Permanen Kecepatan Rendah Skala Kecil,â€Jurnal Sains Materi Indonesia, vol.11, no. 1, hal. 38- 41, 2009.
A. Parviainen, “Design of Axial Flux Permanent Magnet Low Speed Machines and Performance Comparison between Radial-Flux and Axial-Flux Machines,†Thesis for the degree of Doctor of Science (Technology), University of Technology, Lappeenranta, Finland, hal. 1-153, 2005.
N. A. Spaldin, Magnetic Materials Fundamentals and Applications Second edition, New York:Cambridge University Press, 2011.
Y. Yanti, L. F. Nurdiyansah, A. P. Tetuko, M. R.T. Siregar, dan P.Sebayang, “Rancang Bangun Generator Mini Tipe Aksial Dengan Menggunakan Magnet Permanen NdFeB dan Kajiannya,â€Seminar dan Focus Group Discussion (FGD) Material Maju: Magnet dan Aplikasinya, 2013.
Davila-Vilchis J.M. dan R.S. Mishr, “Performance of a hydrokinetic energy system using an axial-flux permanent magnet generator,â€Energy, vol.65,hal. 631-638, 2014.
A. Parviainen,M. Niemela,J. Pyrhonen,J. Mantere, “Performancecomparison between low-speed axial- flux and radial-flux permanent magnetmachines including mechanical constraints,â€IEEE International Conference on Electric Machines and Drives, hal. 1695-1702, 2005.
Akatsu K. Dan Wakui S., “A comparison between axial and radial flux PMmotor by optimum design method from the required output NT characteristics,â€COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 25, hal. 496-509, 2006.
M.Pinilla dan S. Martinez, “Optimal design of permanent-magnet direct drive generator for wind energy considering the cost uncertainty in raw materials,â€Renewable Energy,vol. 41,hal. 267-276,2012.
Gargov N.P., A.F. Zobaa, dan I. Pisica, “Separated magnet yoke for permanent magnet linear generator for marine wave energy converters,â€Electric Power Systems Research,vol. 109, hal. 63-70, 2014.
Ahmed D. Dan A. Ahmad, “An optimal design of coreless direct-drive axial fluxpermanent magnet generator for wind turbine,â€Journal of Physics: Conference Series, 439, 012039, 2013.
G. F. Price, T. D. Batzel, M. Comanescu, dan B. A. Muller,“Design and Testing of a Permanet Magnet Axial Flux Wind Power Generator,â€Proc.The 2008 IAJC-IJME International Conference, 2008.
Parlikar V.V., P.M. Kurulkar, K.P. Rathod, dan P. Kumari, “A Axial-Flux Permanent Magnet (AFPM) Generator for Defence Applications - Paradigm Shift in Electrical Machine,â€ACEEE Int. J. on Electrical and Power Engineering, vol. 03, no. 01, hal. 33-37, 2012.
L. Petru dan G. Mazen, “Experimental Stand for the Study of a Three-Phase Synchronous Generator with Permanent Super Magnets,â€Procedia Engineering,vol. 69,hal. 231-236, 2014.
Z. Zhang, S. M. Muyeen, A. Al-Durra, R. Nilssen, dan A. Nysveen, “Multiphysics 3D modelling of ironless permanent magnet generators,â€Energy Procedia,vol. 53, hal. 34-43, 2014.
M. Nasiri, J. Milimonfared, dan S.H. Fathi, “Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines,â€Energy Conversion and Management,vol. 86, hal. 892-900, 2014.
A. Kumar, S. Marwaha, A. Singh, A. Marwaha, “Simulation Modelling Practice and Theory,â€Simulation Modelling Practice and Theory,vol. 17,hal. 1548-1554, 2009.
E. Kurt, H. Gör, M. Demirtas, “Theoretical and experimental analyses of a single phase permanent magnet generator (PMG) with multiple cores having axial and radial directed fluxes,â€Energy Conversion and Management,vol. 77,hal. 163-172, 2014.
S. Kiartzis dan A. Kladas, “Deterministic and artificial intelligence approaches in optimizing permanent magnet generators for wind power applications,â€Journal of Materials Processing Technology,vol. 108, hal. 232-236, 2001.
S. Eriksson, H. Bernhoff, “Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power,â€Applied Energy,vol. 88,hal. 265–271, 2011.
A. S. Holmes, G. Hong, danK. R. Pullen, “Axial-Flux Permanent Magnet Machines for Micropower Generation,â€Journal of Microelectromechanical Systems, vol. 14, no. 1, hal. 54-62, 2005.
H. Raisigel, O. Cugat, danJ. Delamare, “Permanent magnet planar micro-generators,â€Sensors and Actuators A, vol. 130–131, hal 438-444, 2006.