Development of Regulatory Recommendations for City Bus Bumper Bars through Design and Analysis Based on Standard 67 Pa. Code § 171.44

Authors

  • Leonardo Paksi Sukoco Land Transportation Management Center (BPTD) Class III Bengkulu
  • Mochammad Avrieza Havies Aravy Automotive Engineering Technology, Polytechnic of Road Transportation Safety
  • Nurrahim Hasan Al Banna Automotive Engineering Technology, Polytechnic of Road Transportation Safety
  • Feby Ayu Winesti Automotive Engineering Technology, Polytechnic of Road Transportation Safety

Keywords:

Bumper bar regulations, Urban bus safety, Passive vehicle safety, Impact performance criteria, ANSYS explicit dynamics

Abstract

Indonesia currently does not have specific technical regulations governing the design of urban bus bumper bars, unlike passenger vehicles, which are regulated by national and international standards. Data from the Indonesian National Police Traffic Corps in 2022 recorded 3,847 bus-related accidents resulting in 587 fatalities, with 42 percent occurring in urban areas at speeds ranging from 30 to 50 km/h. This study aims to develop regulatory recommendations for urban bus bumper bars by adapting the standard 67 Pa. Code §171.44 to Indonesian operational conditions. The research methodology includes field observations of 10 Trans Jogja buses, bumper bar design using a combination of 6061-T6 aluminum alloy and elastomer materials, and structural performance analysis through impact simulations based on the Explicit Dynamics finite element method using ANSYS software. The simulation results show that the proposed bumper bar design satisfies safety requirements, with maximum stress values of 260 MPa at 30 km/h and 293 MPa at 50 km/h. Although the stress at 50 km/h exceeds the material yield strength of 280 MPa, the response indicates localized plastic deformation without global structural failure. Controlled deformation of 163.04 mm at 30 km/h and 275.78 mm at 50 km/h, following a localized progressive deformation pattern without excessive intrusion, along with an energy absorption capacity of at least 5 kJ, demonstrates effective passenger protection. The resulting regulatory recommendations include dimensional specifications (height 400–600 mm, width ≥2000 mm), material requirements (yield strength ≥250 MPa), and performance criteria to support the revision of Minister of Transportation Regulation No. 33 of 2018.

References

[1] W. Abramowicz and N. Jones, “Dynamic axial crushing of circular tubes,” Int. J. Impact Eng., vol. 2, no. 3, pp. 263–281, 1984, doi: https://doi.org/10.1016/0734-743X(84)90010-1.

[2] E. Acar, B. Yilmaz, M. A. Güler, and M. Altin, “Multi-fidelity crashworthiness optimization of a bus bumper system under frontal impact,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 9, p. 493, 2020, doi: https://doi.org/10.1007/s40430-020-02572-3.

[3] E. S. Yeshanew et al., “Experimental investigation and crashworthiness analysis of 3D printed carbon PA automobile bumper to improve energy absorption by using LS-DYNA,” Adv. Mech. Eng., vol. 15, no. 6, p. 16878132231181058, Jun. 2023, doi: https://doi.org/10.1177/16878132231181058.

[4] B. M. Ramadhan, B. W. Ndimila, and I. I. Mwesigwa, “Crashworthiness Analysis of Automotive Frontal Bumper Materials,” Int. J. Mech. Eng. Appl., vol. 13, no. 5, pp. 157–169, Oct. 2025, doi: https://doi.org/10.11648/j.ijmea.20251305.12.

[5] I. E. Asres, E. G. Koricho, and E. Z. Kassa, “Investigating the effect of localized heat treatment and bioinspired structure on the crashworthiness of bumper subsystem.,” Heliyon, vol. 11, no. 1, p. e40958, Jan. 2025, doi: https://doi.org/10.1016/j.heliyon.2024.e40958.

[6] A. D. Bank, Sustainable Transport Solutions. Manila: ADB, 2021.

[7] K. Chandrashekar and D. Murthy, “Design and analysis of automotive bumper,” Int. J. Mech. Eng. Technol., vol. 11, no. 3, pp. 45–58, 2020.

[8] K. Polri, “Statistik Kecelakaan Lalu Lintas 2022.” Jakarta, 2023.

[9] S. P. Santosa, T. Wierzbicki, A. G. Hanssen, and M. Langseth, “Experimental and numerical studies of foam-filled sections,” Int. J. Impact Eng., vol. 24, no. 5, pp. 509–534, 2000, doi: https://doi.org/10.1016/S0734-743X(99)00036-6.

[10] K. N. K. Transportasi, “Laporan Investigasi Tabrakan Bus Transjakarta BMP 240 dengan Bus Transjakarta BMP 211, 25 Oktober 2021,” Komite Nasional Keselamatan Transportasi, Jakarta, 2021.

[11] K. P. R. Indonesia, “Statistik Transportasi Darat 2023,” Kementerian Perhubungan Republik Indonesia, Jakarta, 2023.

[12] B. P. Statistik, “Estimasi Kerugian Ekonomi Kecelakaan Lalu Lintas,” Badan Pusat Statistik, Jakarta, 2022.

[13] K. P. R. Indonesia, “Peraturan Menteri Perhubungan Nomor 33 Tahun 2018 tentang Pengujian Tipe Kendaraan Bermotor.” Kementerian Perhubungan Republik Indonesia, Jakarta, 2018.

[14] M. A. Güler, M. E. Cerit, S. K. Mert, and E. Acar, “Experimental and numerical study on the crashworthiness evaluation of an intercity coach under frontal impact conditions,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 234, no. 13, pp. 3026–3041, Jun. 2020, doi: https://doi.org/10.1177/0954407020927644.

[15] P. D. of Transportation, “Pennsylvania Code Title 67 Chapter 171.” PennDOT, Harrisburg, 2019.

[16] A. Setiawan and H. Wicaksono, “Survey on bus body manufacturers in Indonesia,” J. Soc. Automot. Eng. Indones., vol. 6, no. 2, pp. 78–89, 2022.

[17] D. P. D. I. Yogyakarta, “Spesifikasi Teknis Trans Jogja,” Yogyakarta, 2023.

[18] A. A. Ramadhan, S. Talib, and A. R. A. Rafie, “Comparative study on crashworthiness of bumper materials,” J. Mech. Eng. Sci., vol. 13, no. 4, pp. 5835–5849, 2019.

[19] L. P. Sukoco, F. Tohom, and E. Pranoto, “Optimalisasi Material dan Profil Reinforcement Beam Guna Meningkatkan Energi Serap Benturan Berbasis Simulasi FEM,” J. Rekayasa Mesin, vol. 16, no. 1, pp. 327–340, May 2025, doi: https://doi.org/10.21776/jrm.v16i1.2106.

[20] M. A. Aravy, L. Sukoco, N. Al Bana, M. Rosyid, and H. Wibowo, “Pengembangan Ergonomi Kursi Belajar Berbasis Desain dan Simulasi Elemen Hingga,” J. Promot. Prev., vol. 8, no. 6, pp. 1604–1612, Dec. 2025, doi: https://doi.org/10.47650/jpp.v8i6.2387.

[21] U. N. E. C. for Europe, “UN ECE Regulation No. 42: Uniform provisions concerning the approval of vehicles with regard to their front and rear protective devices.” United Nations, 1980.

[22] E. T. W. Federation, “Norwegian 2025 Report on Crashworthiness of Buses,” European Transport Workers’ Federation, 2025. [Online]. Available: https://www.etf-europe.org/wp-content/uploads/2025/10/Norwegian-2025-Report-on-Crashworthiness-of-buses.pdf

Downloads

Published

2026-01-15

How to Cite

Sukoco, L. P., Aravy, M. A. H., Banna, N. H. A., & Winesti, F. A. (2026). Development of Regulatory Recommendations for City Bus Bumper Bars through Design and Analysis Based on Standard 67 Pa. Code § 171.44. Piston: Journal of Technical Engineering, 9(2), 102–111. Retrieved from https://openjournal.unpam.ac.id/index.php/Piston/article/view/56539

Issue

Section

Articles